Skip to main content

Advertisement

Log in

Automatic Computation of Left Ventricular Volume Changes Over a Cardiac Cycle from Echocardiography Images by Nonlinear Dimensionality Reduction

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Curve of left ventricular (LV) volume changes throughout the cardiac cycle is a fundamental parameter for clinical evaluation of various cardiovascular diseases. Currently, this evaluation is often performed manually which is tedious and time consuming and suffers from significant interobserver and intraobserver variability. This paper introduces a new automatic method, based on nonlinear dimensionality reduction (NLDR) for extracting the curve of the LV volume changes over a cardiac cycle from two-dimensional (2-D) echocardiography images. Isometric feature mapping (Isomap) is one of the most popular NLDR algorithms. In this study, a modified version of Isomap algorithm, where image to image distance metric is computed using nonrigid registration, is applied on 2-D echocardiography images of one cycle of heart. Using this approach, the nonlinear information of these images is embedded in a 2-D manifold and each image is characterized by a symbol on the constructed manifold. This new representation visualizes the relationship between these images based on LV volume changes and allows extracting the curve of the LV volume changes automatically. Our method in comparison to the traditional segmentation algorithms does not need any LV myocardial segmentation and tracking, particularly difficult in the echocardiography images. Moreover, a large data set under various diseases for training is not required. The results obtained by our method are quantitatively evaluated to those obtained manually by the highly experienced echocardiographer on ten healthy volunteers and six patients which depict the usefulness of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guyton AC, Hall JE: Textbook of Medical Physiology. Elsevier, 2006

  2. Gottdiener JS, Bednarz J, Devereux R, et al: Recommendations for use of echocardiography in clinical trials: a report from the American society of echocardiography's guidelines and standards committee and the task force on echocardiography in clinical trials. J Am Soc Echocardiogr 17:1086–1119, 2004

    PubMed  Google Scholar 

  3. Lang RM, Bierig M, Devereux RB, et al: Recommendations for chamber quantification. Eur J Echocardiogr 7:79–108, 2006

    Article  PubMed  Google Scholar 

  4. Cannesson M, Tanabe M, Suffoletto MS, et al: A novel two-dimensional echocardiographic image analysis system using artificial intelligence-learned pattern recognition for rapid automated ejection fraction. J Am Coll Cardiol 49:217–226, 2007

    Article  PubMed  Google Scholar 

  5. Barcaro U, Moroni D, Salvetti O: Automatic computation of left ventricle ejection fraction from dynamic ultrasound images. Pattern Recognit Image Anal 18:351–358, 2008

    Article  Google Scholar 

  6. Ghanbari S, Shalbaf A, Behnam H, http://lib.bioinfo.pl/auth: Sani, ZA et al: Fully automatic segmentation of left ventricle in a sequence of echocardiography images of one cardiac cycle by dynamic directional vector field convolution (DDVFC) method and manifold Learning. Biomed Eng-App Bas C 25:1–15, 2013

  7. Saini K, Dewal ML, Rohit M: A fast region-based active contour model for boundary detection of echocardiographic images. J Digit Imaging 25:271–278, 2012

    Article  PubMed Central  PubMed  Google Scholar 

  8. Beymer D, Syeda-Mahmood T, Amir A, et al: Automatic estimation of left ventricular dysfunction from echocardiogram videos. IEEE Workshops on Computer Vision and Pattern Recognition (CVPR), Miami, 2009, pp 164–171

    Google Scholar 

  9. Bosch JG, Mitchell SC, Lelieveldt BPF, et al: Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans Med Imaging 21:1374–1383, 2002

    Article  PubMed  Google Scholar 

  10. Comaniciu D, Zhou XS, Krishnan S: Robust real-time myocardial border tracking for echocardiography: an information fusion approach. IEEE Trans Med Imaging 23:849–860, 2004

    Article  PubMed  Google Scholar 

  11. Bansod P, Desai UB, Merchant SN, et al: Segmentation of left ventricle in short-axis echocardiographic sequences by weighted radial edge filtering and adaptive recovery of dropout regions. Comput Methods Biomech Biomed Eng 14(7):603–613, 2011

    Article  Google Scholar 

  12. Setarehden SK, Soraghan JJ: Cardiac left ventricular volume changes assessment by long axis echocardiographical image processing. Vision Image Signal Proc 145:203–212, 1998

    Article  Google Scholar 

  13. Ammar M, Mahmoudi S, Chikh MA, Abbou A: Endocardial border detection in cardiac magnetic resonance images using level set method. J Digit Imaging 25(2):294–306, 2012

    Article  PubMed Central  PubMed  Google Scholar 

  14. Mahapatra D: Cardiac image segmentation from cine cardiac mri using graph cuts and shape priors. J Digit Imaging 26(4):721–730, 2013

    Article  PubMed Central  PubMed  Google Scholar 

  15. Huang S, Liu J, Lee LC, et al: An image-based comprehensive approach for automatic segmentation of left ventricle from cardiac short axis cine MR images. J Digit Imaging 24(4):598–608, 2011

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ledesma-Carbayo MJ, Kybic J, Desco M, et al: Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation. IEEE Trans Med Imaging 24:1113–1126, 2005

    Article  PubMed  Google Scholar 

  17. Tenenbaum JB, de Silva V, Langford JC: global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323, 2000. Reprint available on-line:http://web.mit.edu/cocosci/Papers/sci_reprint.pdf

  18. Roweis ST, Saul LK: Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326, 2000

    Article  CAS  PubMed  Google Scholar 

  19. Saul L, Roweis S: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J Mach Learn Res 4:119–155, 2003

    Google Scholar 

  20. Belkin M, Niyogi P: Laplacian Eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Process Syst 14:585–591, 2001

    Google Scholar 

  21. Schiller NB, Shah PM, Crawford M, DeMaria A, et al: Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, subcommittee on quantitation of two-dimensional echocardiograms. J Am Soc Echocardiogr 2:358–367, 1989

    Article  CAS  PubMed  Google Scholar 

  22. Pless R, Souvenir R: A survey of manifold learning for images. IPSJ Trans Comput Vision Appl 1:83–94, 2009

    Article  Google Scholar 

  23. Souvenir R, Pless R: Isomap and nonparametric models of image deformation. IEEE Workshop on Motion and Video Computing (WMVC), Breckenridge, 2005, pp 195–200

    Google Scholar 

  24. Gifani P, Behnam H, Shalbaf A, Sani ZA: Automatic detection of end-diastole and end-systole from echocardiography images using manifold learning. Physiol Meas 31:1091–1103, 2010

    Article  PubMed  Google Scholar 

  25. Aljabar P, Rueckert D, Crum WR: Automated morphological analysis of magnetic resonance brain imaging using spectral analysis. NeuroImage 43:225–235, 2008

    Article  CAS  PubMed  Google Scholar 

  26. Yang L, Georgescu B, Zheng Y, et al: Prediction based collaborative trackers (PCT): a robust and accurate approach toward 3D medical object tracking. IEEE Trans Med Imaging 30:1921–1932, 2011

    Article  PubMed  Google Scholar 

  27. Akhbardeh A, Jacobs MA: Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation. Med Phys 39:2275–2289, 2012

    Article  PubMed Central  PubMed  Google Scholar 

  28. Shalbaf A, Behnam H, Alizadeh-Sani Z, Shojaifard M: Automated assessment of regional and global wall motion abnormalities in echocardiography images by nonlinear dimensionality reduction. Med Phys 40(5), 2013

  29. Suzuki K, Zhang J, Xu J: Massive-training artificial neural network coupled with Laplacian–Eigenfunction-based dimensionality reduction for computer aided detection of polyps in CT colonography. IEEE Trans Med Imaging 29:1907–1917, 2010

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wang S, Yao J, Summers RM: Improved classifier for computer-aided polyp detection in CT Colonography by nonlinear dimensionality reduction. Med Phys 35:1377–1386, 2008

    Article  PubMed Central  PubMed  Google Scholar 

  31. Souvenir R, Pless R: Image distance functions for manifold learning. Image Vision Comput 25:365–373, 2007

    Article  Google Scholar 

  32. Shalbaf A, Behnam H, Alizadeh-Sani Z, Shojaifard M: Left ventricle wall motion quantification from echocardiographic images by non-rigid image registration”. Int J Comput Ass Rad 7(5):769–783, 2012

    Google Scholar 

  33. Shalbaf A, Behnam H, Alizadeh-Sani Z, Shojaifard M: Automatic classification of left ventricular regional wall motion abnormalities in echocardiography images using nonrigid image registration. J Digit Imaging 26(5):909–919, 2013

    Article  PubMed Central  PubMed  Google Scholar 

  34. Dijkstra W: A note on two problems in connexion with graphs. Numer Math 1:269–271, 1959

    Article  Google Scholar 

  35. Floyd RW: Algorithm 97: shortest path Commun. ACM 5:345, 1962

    Article  Google Scholar 

  36. Borg I, Groenen P: Modern multidimensional scaling: theory and applications. Springer, Berlin, 1997

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Shalbaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh Sani, Z., Shalbaf, A., Behnam, H. et al. Automatic Computation of Left Ventricular Volume Changes Over a Cardiac Cycle from Echocardiography Images by Nonlinear Dimensionality Reduction. J Digit Imaging 28, 91–98 (2015). https://doi.org/10.1007/s10278-014-9722-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-014-9722-z

Keywords

Navigation