Skip to main content
Log in

Effet de la radiothérapie sur les cellules souches cancéreuses de cancer du sein : résistance, reprogrammation et traitements

The effect of radiotherapy on breast cancer stem cells: Resistance, reprogramming and treatments

  • Mise au Point / Update
  • Published:
Oncologie

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Résumé

L’identification des cellules souches cancéreuses (CSC) cette dernière décennie a permis l’émergence de nouveaux espoirs. Néanmoins, leur caractérisation a mis en évidence une certaine résistance aux traitements anticancéreux tels que la radiothérapie. De plus, il a récemment été montré que certaines cellules non-CSC pouvaient réacquérir le phénotype de cellules souches cancéreuses sous l’effet de traitement anticancéreux, enrichissant d’autant la population résistante. Nous proposons dans cette revue de faire un tour d’horizon des différentes propriétés des CSC et tout particulièrement des mécanismes de radiorésistance, de reprogrammation et des approches thérapeutiques envisagées pour outrepasser ces résistances.

Abstract

In the past decade, the identification of cancer stem cells (CSCs) has raised new hope for the development of anticancer therapies. Nevertheless, CSC characterization highlights the relative resistance of CSCs to conventional therapies such as ionizing radiation. Moreover, it has been recently shown that some anti-cancer treatments could induce non- CSCs reprogramming into CSCs through anti-cancer treatment effect, enriching tumors with resistant cells. In this review, we will discuss CSC properties; we will especially describe the radio-resistance of CSC, reprogramming and explore the therapeutic approaches to by-pass these resistances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–7

    Article  CAS  PubMed  Google Scholar 

  2. Al-Hajj, Wicha MS, Benito-Hernandez A, et al. (2003) Prospective identification of tumorigenic breast cancer cells. Acad Sci USA 100: 3983–8

    Article  CAS  Google Scholar 

  3. Quintana E, Shackleton M, Sabel M, et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Metzger-Filho O, Tutt A, Azambuja E, et al (2012) Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol 30:1879–87

    Article  CAS  PubMed  Google Scholar 

  5. Yin B, Ma ZY, Zhou ZW, et al (2015) The TrkB+ cancer stem cells contribute to post-chemotherapy recurrence of triple-negative breast cancers in an orthotopic mouse model. Oncogene 34:761–70

    Article  CAS  PubMed  Google Scholar 

  6. Lagadec C, Dekmezian C, Bauché L, et al (2012) Oxygen levels do not determine radiation survival of breast cancer stem cells. PloS One 7:e34545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolfe AR, Woodward WA (2015) Breast cancer stem cell correlates as predicative factors for radiation therapy; Semin Radiat Oncol 25: 251–9

    Article  PubMed  Google Scholar 

  8. Kreso A, Dick J (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14:275–91

    Article  CAS  PubMed  Google Scholar 

  9. Wu C, Alman BA (2008) Side population cells in human cancers. Cancer Lett 268:1–9

    Article  CAS  PubMed  Google Scholar 

  10. Ginestier C, Hur MH, Charafe-Jauffret E, et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vlashi E, Kim K, Lagadec C, et al (2009) In vivo imaging, tracking, and targeting of cancer stem cells. J Natl Cancer Inst 101:350–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamanaka S (2008) Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif 41 Suppl 1:51–6

    PubMed  Google Scholar 

  13. Matsui WH (2016) Cancer stem cell signaling pathways. Medicine 95:S8–S19

    Article  CAS  PubMed  Google Scholar 

  14. Lu X, Mazur SJ, Lin T, et al (2014) The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. Oncogene 33: 2655–64

    Article  CAS  PubMed  Google Scholar 

  15. Wang YJ, Herlyn M (2015) The emerging roles of Oct4 in tumorinitiating cells Am J Physiol Cell Physiol 309: C709–18

    CAS  Google Scholar 

  16. Leis O, Eguiara A, Lopez-Arribillaga E, et al (2011) Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 31:1354–65

    Article  PubMed  Google Scholar 

  17. Gladstone M, Su TT (2012) Radiation responses and resistance. Int Rev Cell Mol Biol 299:235–53

    Article  CAS  PubMed  Google Scholar 

  18. Tutt A, Yarnold J (2006) Radiobiology of breast cancer. Clin Oncol 18:166–78

    Article  CAS  Google Scholar 

  19. Al-Assar O, Muschel R, Mantoni T, et al (2009) Radiation response of cancer stem-like cells from established human cell lines after sorting for surface markers. Int J Radiat Oncol Biology Phys 75:1216–25

    Article  CAS  Google Scholar 

  20. Phillips T, McBride W, Pajonk F (2006) The response of CD24(–/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–85

    Article  PubMed  Google Scholar 

  21. Lagadec C, Vlashi E, Della Donna L, et al (2010) Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Res 12: R13

    Article  PubMed  PubMed Central  Google Scholar 

  22. Debeb B, Xu W, Woodward W (2009) Radiation resistance of breast cancer stem cells: understanding the clinical framework. J Mammary Gland Biol Neoplasia 14:11–7

    Article  PubMed  Google Scholar 

  23. Diehn M, Cho R, Lobo N, et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim SY, Rhee J, Song X, et al (2012) Breast cancer stem cell-like cells are more sensitive to ionizing radiation than non-stem cells: role of ATM. PloS One 7:e50423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Woodward W, Chen M, Behbod F, et al (2007) WNT/betacatenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A 104:618–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Croker AK, Allan AL (2012) Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells. Breast Cancer Res Treat 133:75–87

    Article  CAS  PubMed  Google Scholar 

  27. Rodman S, Spence J, Ronnfeldt T, et al (2016) Enhancement of radiation response in breast cancer stem cells by inhibition of thioredoxin-and glutathione-dependent metabolism. Radiat Res 186: 385–95

    Article  CAS  PubMed  Google Scholar 

  28. Karimi-Busheri F, Rasouli-Nia A, Mackey J, et al (2010) Senescence evasion by MCF-7 human breast tumor-initiating cells. Breast Cancer Res 12:R31

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yin H, Glass J (2011) The phenotypic radiation resistance of CD44+/CD24 -or low breast cancer cells is mediated through the enhanced activation of ATM signaling. PLoS One 6: e24080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maugeri-Saccà M, Bartucci M, Maria R (2012) DNA damage repair pathways in cancer stem cells. Mol Cancer Ther 11:1627–36

    Article  PubMed  Google Scholar 

  31. Al-Assar O, Mantoni T, Lunardi S, et al (2011) Breast cancer stem-like cells show dominant homologous recombination due to a larger S-G2fraction. Cancer Biology Ther 11:1028–35

    Article  CAS  Google Scholar 

  32. Tian YH, Xie GZ, Ren C, et al (2011) Radiation-induced G2 phase arrest may contribute to the radioresistance of breast cancer stem cells. Nan Fang Yi Ke Da Xue Xue Bao 31:53–6

    PubMed  Google Scholar 

  33. Yang ZX, Sun YH, He JG, et al (2015) Increased activity of CHK enhances the radioresistance of MCF-7 breast cancer stem cells. Oncol Lett 10:3443–9

    PubMed  PubMed Central  Google Scholar 

  34. Harper W, Elledge S (2007) The DNA damage response: ten years after. Mol Cell 28: 739–45

    Article  CAS  PubMed  Google Scholar 

  35. Phillips T, Kim K, Vlashi E, et al (2007) Effects of recombinant erythropoietin on breast cancer-initiating cells. Neoplasia 9:1122–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lamb R, Fiorillo M, Chadwick A, et al (2015) Doxycycline downregulates DNA-PK and radiosensitizes tumor initiating cells: implications for more effective radiation therapy. Oncotarget 6:14005–25

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Wu M, Han X, et al (2015) High-throughput, label-free isolation of cancer stem cells on the basis of cell adhesion capacity. Angew Chem Int Ed Engl 54: 10838–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lai Y, Yu X, Lin X, He S (2016) Inhibition of mTOR sensitizes breast cancer stem cells to radiation-induced repression of selfrenewal through the regulation of MnSOD and Akt. Int J Mol Med 37: 369–77

    CAS  PubMed  Google Scholar 

  39. Song C, Lee H, Dings R, et al (2012) Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Sci Rep 2:362

    PubMed  PubMed Central  Google Scholar 

  40. Duru N, Fan M, Candas D, et al (2012) HER2-associated radioresistance of breast cancer stem cells isolated from HER2-negative breast cancer cells. Clin Cancer Res 18:6634–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li B, Cheng XL, Yang YP, Li ZQ (2013) GRP78 mediates radiation resistance of a stem cell-like subpopulation within the MCF-7 breast cancer cell line. Oncol Rep 30:2119–26

    CAS  PubMed  Google Scholar 

  42. Ye X, Weinberg R (2015) Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol 25:675–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lagadec C, Vlashi E, Della Donna L, et al (2012) Radiationinduced reprogramming of breast cancer cells. Stem Cells 30:833–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao X, Sishc B, Nelson C, et al (2016) Radiation-induced reprogramming of pre-senescent mammary epithelial cells enriches putative CD44(+)/CD24(–/low) stem cell phenotype. Front Oncol 6:138

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ghisolfi L, Keates A, Hu X, et al (2012) Ionizing radiation induces stemness in cancer cells. PloS One 7:e43628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dahan P, Gala JM, Delmas C, et al (2014) Ionizing radiations sustain glioblastoma cell dedifferentiation to a stem-like phenotype through survivin: possible involvement in radioresistance. Cell Death Dis 5:e1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Auffinger B, Tobias AL, Han Y, et al (2014) Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ 21:1119–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Y, Li W, Patel SS, et al (2014) Blocking the formation of radiation-induced breast cancer stem cells. Oncotarget 5:3743–55

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yan Y, Li Z, Xu X, et al (2016) All-trans retinoic acids induce differentiation and sensitize a radioresistant breast cancer cells to chemotherapy. BMC Complement Altern Med 16:113

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pham P, Phan N (2011) Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy. J Transl Med 9:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim RK, Uddin N, Hyun JW, et al (2015) Novel anticancer activity of phloroglucinol against breast cancer stem-like cells. Toxicol Applied Pharmacol 286:143–50

    Article  CAS  Google Scholar 

  52. Kim RK, Cui YH, Yoo KC, et al (2015) Radiation promotes malignant phenotypes through SRC in breast cancer cells. Cancer Sci 106: 78–85

    Article  CAS  PubMed  Google Scholar 

  53. Jeong Y, Swami S, Krishnan AV, et al (2015) Inhibition of mouse breast tumor-initiating cells by calcitriol and dietary vitamin D. Mol Cancer Ther 14: 1951–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sims-Mourtada J, Opdenaker LM, Davis J, et al (2015) Longterm, low dose genistein decreases stem cell populations and sensitizes inflammatory breast cancer cell lines to radiation. Cancer Stud Mol Med 2:60–5

    Article  Google Scholar 

  55. Koshio J, Kagamu H, Nozaki K, et al (2013) DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 3, X-linked is an immunogenic target of cancer stem cells. Cancer Immunol Immunother 62:1619–28

    Article  CAS  PubMed  Google Scholar 

  56. He L, Gu J, Lim L, et al (2016) Nanomedicine-mediated therapies to target breast cancer stem cells. Front Pharmacol 7:313

    Article  PubMed  PubMed Central  Google Scholar 

  57. Burke A, Singh R, Carroll D, et al (2012) The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials 33:2961–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Atkinson R, Zhang M, Diagaradjane P, et al (2010) Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci Transl Med 2:55ra79

  59. Andersson E, Lendahl U (2014) Therapeutic modulation of Notch signalling — are we there yet? Nat Rev Drug Discov 13:357–78

    Article  CAS  PubMed  Google Scholar 

  60. Ogawa Y, Kubota K, Aoyama N, et al (2015) Non-surgical breast-conserving treatment (KORTUC-BCT) using a new radiosensitization method (KORTUC II) for patients with stage I or II breast cancer. Cancers 7:2277–89

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang X, Lin S, Fang B, et al (2013) Therapy-resistant cancer stem cells have differing sensitivity to photon versus proton beam radiation. J Thorac Oncol 8:1484–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lagadec.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailleul-Dubois, J., Bidan, N., Le Bourhis, X. et al. Effet de la radiothérapie sur les cellules souches cancéreuses de cancer du sein : résistance, reprogrammation et traitements. Oncologie 19, 77–84 (2017). https://doi.org/10.1007/s10269-017-2699-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-017-2699-8

Mots clés

Keywords

Navigation