Skip to main content

Advertisement

Log in

Effect of adhesive system application for cavities prepared with erbium, chromium: yttrium scandium gallium garnet laser on rat dental pulp tissue

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

We examined the effects of adhesive systems under study applied for a laser-cut cavity using an Er,Cr:YSGG laser on rat dental pulp at 24 h and 14 days postoperatively. Group 1, laser-cut cavities were treated with a self-etching-primer and bonding agent; group 2, pretreated with a phosphoric-acid, and then treated with a self-etching-primer and bonding agent; group 3, pretreated with a phosphoric-acid and sodium-hypochlorite, and then treated with a self-etching-primer and bonding agent; and group 4, treated with an all-in-one adhesive. A flowable resin composite was used as filling material for each cavity treated with each group. A glass-ionomer-cement was used as a control. The following items were evaluated: pulp-tissue-disorganization (PTD), inflammatory-cell-infiltration (ICI), tertiary-dentin-formation (TDF), and bacterial-penetration (BP). The results were statistically analyzed using the Kruskal–Wallis test and Mann–Whitney U test. No significant differences were observed among the experimental groups for all parameters after 24 h and 14 days (P > 0.05). The majority of the specimens showed PTD with edema formation after 24 h; however, all the specimens demonstrated pulpal healing with TDF after 14 days. On the parameter of TDF, all groups showed significant differences between the two postoperative periods (P < 0.01). On the parameter of ICI, a significant difference was found between the two postoperative periods in group 4 (P < 0.05). No specimens showed BP. The pretreatment on the cavity prepared with the laser using phosphoric-acid or sodium-hypochlorite did not affect the dental pulp healing of rat tooth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Komori T, Yokoyama K, Takato T, Matumoto K. Clinical application of the erbium: YAG laser for apicoectomy. J Endod. 1997;23:748–50.

    Article  PubMed  Google Scholar 

  2. Takizawa M, Aoki S, Takase Y, Ishikawa T, Kumazaki M, Inoue M, Zennyu K, Fujii B, Hasegawa K, Ishikawa I. Clinical evaluation of Er: Yag laser for cavity preparation. Oper Dent. 1995;38:1035–47.

    Google Scholar 

  3. Mir M, Meister J, Franzen R, Sabounchi SS, Lampert F, Gutknecht N. Influence of water-layer thickness on Er: YAG laser ablation of enamel of bovine anterior teeth. Lasers Med Sci. 2008;23:451–7.

    Article  PubMed  Google Scholar 

  4. Eversole LA, Rizoiu IM. Preliminary investigations on the utility of an Erbium, Chromium: YSGG laser. J Calif Dent Assoc. 1995;23:41–7.

    PubMed  Google Scholar 

  5. Hadley J, Young DA, Eversole LR, Gornbein JA. A laser-powered hydrokinetic system for caries removal and cavity preparation. J Am Dent Assoc. 2000;131:777–85.

    Article  PubMed  Google Scholar 

  6. Rizoiu I, Kohanghadosh F, Kimmel AI, Eversole LR. Pulpal thermal responses to a rebium, chromium: YSGG pulsed laser hydrokinetic system. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;86:220–3.

    Article  PubMed  Google Scholar 

  7. Kilinc E, Roshkind DM, Antonson SA, Antonson DE, Hardigan PC, Siegel SC, Thomas JW. Thermal safety of Er: YAG and Er, Cr:YSGG lasers in hard tissue removal. Photomed Laser Surg. 2009;27:565–70.

    Article  PubMed  Google Scholar 

  8. Kato C, Taira Y, Suzuki M, Shinkai K, Katoh Y. Conditioning effects of cavities prepared with an Er, Cr:YSGG laser and an air-turbine. Odontology. 2012;100:164–71.

    Article  PubMed  Google Scholar 

  9. Esteves-Oliveira M, Zezell DM, Apel C, Turbino ML, Aranha AC, Eduardo Cde P, Gutknecht N. Bond strength of self-etching primer to bur cut, Er, Cr:YSGG, and Er:YAG lased dental surfaces. Photomed Laser Surg. 2007;25:373–80.

    Article  PubMed  Google Scholar 

  10. Tachibana A, Marques MM, Soler JM, Matos AB. Erbium, chromium: yttrium scandium gallium garnet laser for caries removal: influence on bonding of a self-etching adhesive system. Lasers Med Sci. 2008;23:435–41.

    Article  PubMed  Google Scholar 

  11. Sakakibara Y, Ishimaru K, Takamizu M. A study on bond strength to dentin irradiated by Erbium:YAG Laser. Oper Dent. 1998;41:207–19.

    Google Scholar 

  12. Fujitani M, Harima H, Shintani H. Does Er: YAG or CO2 laser ablation of dentin affect the adhesive properties of resin bonding systems? Excerpta Medica Int Congr Ser. 2003;1248:193–9.

    Google Scholar 

  13. Iwata N, Iwamoto K, Fujito Y, Yoshikawa K, Inoue M, Inoue M. Study on dental hard tissues irradiated by an Er: YAG laser: Part 2 A morphological study of altered layer induction by Er: YAG laser irradiation. Oper Dent. 2001;44:810–6.

    Google Scholar 

  14. Iwata N. Study on dental hard tissues irradiated by an Er: YAG laser. Oper Dent. 2002;45:147–58.

    Google Scholar 

  15. Al-Batayneh OB, Seow WK, Walsh LJ. Assessment of Er: YAG laser for cavity preparation in primary and permanent teeth: a scanning electron microscopy and thermographic study. Pediatr Dent. 2014;36:90–4.

    PubMed  Google Scholar 

  16. Takada M, Shinkai K, Kato C, Suzuki M. Bond strength of resin composite to enamel and dentin prepared with erbium, chromium: yttrium scandium gallium garnet laser. Dent Mater J. 2015;34:863–71.

    Article  PubMed  Google Scholar 

  17. Fujitani M, Inokoshi S, Hosoda H. Effect of acid etching on the dental pulp in adhesive composite restorations. Int Dent J. 1992;42:3–11.

    PubMed  Google Scholar 

  18. Biological evaluation of dental devices. International Standards Organization. 1992; ISO 10993.

  19. Medina VO III, Shinkai K, Shirono M, Tanaka N, Katoh Y. Histopathologic study on pulp response to single-bottle and self-etching adhesive systems. Oper Dent. 2002;27:330–42.

    PubMed  Google Scholar 

  20. Suzuki M, Katsumi A, Watanabe R, Shirono M, Katoh Y. Effects of an experimentally developed adhesive resin system and CO2 laser irradiation on direct pulp capping. Oper Dent. 2005;30:702–18.

    PubMed  Google Scholar 

  21. Taira Y, Shinkai K, Suzuki M, Kato C, Katoh Y. Direct pulp capping effect with experimentally developed adhesive resin systems containing reparative dentin-promoting agents on rat pulp: mixed amounts of additives and their effect on wound healing. Odontology. 2011;99:135–47.

    Article  PubMed  Google Scholar 

  22. Stanley HR, Bethesda M. Design for a human pulp study Part I. Oral Surg Oral Med Oral Pathol. 1968;25:633–47.

    Article  PubMed  Google Scholar 

  23. Stanley HR, Bethesda M. Design for a human pulp study Part II. Oral Surg Oral Med Oral Pathol. 1968;25:756–64.

    Article  PubMed  Google Scholar 

  24. Nitta Y. Effect of surface treatment on microleakage and tensile bond strength of glass polyalkenoate cement. Oper Dent. 1992;35:1346–73.

    Google Scholar 

  25. Ohhashi T. Pulpal response of human dental pulp to glass ionomer cements (Fuji ionomer type I and II). Oper Dent. 1992;29:33–68.

    Google Scholar 

  26. Mount JG. Glass-ionomer cements: past, present and future. Oper Dent. 1994;19:82–90.

    PubMed  Google Scholar 

  27. Haruyama C, Amagai T, Hirai Y. A Study on glass-ionomer cement restoration to an Er:YAG laser-prepared cavity–pulp response and adaptation of the cavity wall. Oper Dent. 2001;44:286–300.

    Google Scholar 

  28. Tanabe K, Yoshiba K, Yoshiba N, Iwaku M, Ozawa H. Immunohistochemical study on pulpal response in rat molars after cavity preparation by Er:YAG laser. Eur J Oral Sci. 2002;110:237–45.

    Article  PubMed  Google Scholar 

  29. Ohshiro T, Calderhead RG. Development of low reactive-level laser therapy and its present status. J Clin Laser Med Surg. 1991;9:267–75.

    PubMed  Google Scholar 

  30. Utsunomiya T. A histopathological study of the effects of low-power laser irradiation on wound healing of exposed dental pulp tissues in dogs, with special reference to lectins and collagens. J Endod. 1998;24:187–93.

    Article  PubMed  Google Scholar 

  31. Ohbayashi E, Matsushima K, Hosoya S, Abiko Y, Yamazaki M. Stimulatory effect of laser irradiation on calcified nodule formation in human dental pulp fibroblasts. J Endod. 1999;25:30–3.

    Article  PubMed  Google Scholar 

  32. Eduardo Fde P, Bueno DF, de Freitas PM, Marques MM, Passos- Bueno MR, Eduardo Cde P, Zatz M. Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med. 2008;40:433–8.

    Article  PubMed  Google Scholar 

  33. Nakakura-Ohshima K, Watanabe J, Kenmotsu S, Ohshima H. Possible role of immunocompetent cells and the expression of heat shock protein-25 in the process of pulpal regeneration after tooth injury in rat molars. J Electron Microsc. 2003;52:581–91.

    Article  Google Scholar 

  34. Ohshima H, Nakakura-Ohshima K, Takeuchi K, Hoshino M, Takano Y, Maeda T. Pulpal regeneration after cavity preparation, with special reference to close spatio-relationships between odontoblasts and immunocompetent cells. Microsc Res Tech. 2003;60:483–90.

    Article  PubMed  Google Scholar 

  35. Ohshima H. Ultrastructural changes in odontoblasts and pulp capillaries following cavity preparation in rat molars. Arch Histol Cytol. 1990;53:423–38.

    Article  PubMed  Google Scholar 

  36. Ohshima H, Sato O, Kawahara I, Maeda T, Takano Y. Responses of immunocompetent cells to cavity preparation in rat molars: an immunohistochemical study using OX6-monoclonal antibody. Connect Tissue Res. 1995;32:303–11.

    Article  PubMed  Google Scholar 

  37. Aoki A, Aleksic V, Iwasaki K, Watanabe H, Abiko Y, Izumi Y. Biorogic effects of the low-level Er:YAG laser. JJSLSM. 2011;32:64–70.

    Article  Google Scholar 

  38. Guzhova I, Margulis B. Hsp 70 chaperone as a survival factor in cell pathology. Int Rev Cytol. 2006;254:101–49.

    Article  PubMed  Google Scholar 

  39. Eisenberg E, Greene LE. Multiple roles of auxillin and hsc70 in clathrin-mediated endocytotis. Traffic. 2007;8:640–6.

    Article  PubMed  Google Scholar 

  40. Ohshima H, Ajima H, Kawano Y, Nozawa-Inoue K, Wakisaka S, Maeda T. Transient expression of heat shock protein (Hsp) 25 in the dental pulp and enamel organ during odontogenesis in the rat incisor. Arch Histol Cytol. 2000;63:381–95.

    Article  PubMed  Google Scholar 

  41. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–39.

    Article  PubMed  Google Scholar 

  42. Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med. 2005;9:267–85.

    Article  PubMed  Google Scholar 

  43. Hung FM, Yang SF, Hsieh YS, Liu CM, Yang LC, Chang YC. Examination of the signal transduction pathways involved in matrix metalloproteinases-2 in human pulp cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:398–403.

    Article  Google Scholar 

  44. Palosaari H, Pennington CJ, Larmas M, Edwards DR, Tjaderhane L, Salo T. Expression profile of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in mature human odontoblasts and pulp tissue. Eur J Oral Sci. 2003;111:117–27.

    Article  PubMed  Google Scholar 

  45. Rhim EM, Ahn SJ, Kim JY, Kim KH, Lee HW, Kim EC, Kim KY, Park SH. Stimulation of matrix metalloproteinases by tumor necrosis factor- alpha in human pulp cell cultures. J Endod. 2013;39:795–800.

    Article  PubMed  Google Scholar 

  46. Hiyama T, Ozeki N, Mogi M, Yamaguchi H, Kawai R, Nakata K, Kondo A, Nakamura H. Martix metalloproteinase-3 in odontoblastic cells derived from iPS cells: unique proliferation response as odontoblastic cells derived from ES cells. PLoS One. 2013;8:e83563.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yamaguchi H, Ozeki N, Kawai R, Tanaka T, Hiyama T, Nakata K, Mogi M, Nakamura H. Proinflammatory cytokines induce stromelysin-1-mediated cell proliferation in dental pulp fibroblast-like cells. J Endod. 2014;40:89–94.

    Article  PubMed  Google Scholar 

  48. Ozeki N, Yamaguchi H, Hiyama T, Kawai R, Nakata K, Mogi M, Nakamura H. IL-1 beta-induced matrix metalloproteinase-3 regulates cell proliferation in rat dental pulp cells. Oral Dis. 2013;8:e83563.

    Google Scholar 

  49. Ozeki N, Yamaguchi H, Kawai R, Hiyama T, Nakata K, Mogi M, Nakamura H. Cytokines induce MMP-3-regulated proliferation of embryonic stem cell-derived odontoblast-like cells. Oral Dis. 2014;20:505–13.

    Article  PubMed  Google Scholar 

  50. Covas DT, Panepucci RA, Fontes AM, Silva WA, Orellana MD, Freitas MC, Neder L, Santos AR, Peres LC, Jamur MC, Zago MA. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol. 2008;36:642–54.

    Article  PubMed  Google Scholar 

  51. Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, Meyertholen KE, O’Connor KC. In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells. 2010;28:788–98.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (No. 23234567). The authors thank Kuraray Noritake Dental and GC Inc. for the experimental adhesive resins and other materials they generously provided. The authors are deeply indebted to Emeritus Prof. S. Yoshie, Department of Histology, The Nippon Dental University School of Life Dentistry at Niigata, for valuable advice and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Shinkai.

Ethics declarations

Conflict of interest

Kuraray Noritake Dental and GC provided the materials used in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takada, M., Suzuki, M., Haga-Tsujimura, M. et al. Effect of adhesive system application for cavities prepared with erbium, chromium: yttrium scandium gallium garnet laser on rat dental pulp tissue. Odontology 105, 300–310 (2017). https://doi.org/10.1007/s10266-016-0278-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-016-0278-x

Keywords

Navigation