Skip to main content
Log in

Satellite-DNA diversification and the evolution of major lineages in Cardueae (Carduoideae Asteraceae)

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

In a previous work, we characterized the HinfI satellite DNA family in the subtribe Centaureinae (Cardueae) demonstrating that a “library” of eight HinfI subfamilies would exist in the common ancestor of all Centaureinae, which were differentially amplified in different lineages. Now, we extend our study by analyzing a total of 219 additional repeats from fifteen species belonging to Carlininae, Echinopsinae and Carduinae, and comparing them to those of Centaureinae. Most HinfI sequences belonged to the subfamily II, although a few sequences of other subfamilies were detected in some species. Additionally, a new subfamily characteristic of several Carduinae species was discovered. Although phylogenetic trees grouped sequences by subfamily affinity instead of species provenance, when comparing repeats of the same subfamily, the degree of divergence between any pair of sequences was related to the evolutionary distance between the species compared in most cases. Exceptions were in comparisons between sequences of some Centaureinae species, and between sequences of some Carduinae species and those of Centaureinae. Our results demonstrate that: (1) At least nine HinfI subfamilies would exist in the common ancestor of Cardueae, each one differentially amplified in different lineages; (2) After differential spreading, sequences of each subfamily evolved concertedly through molecular drive, resulting in the gradual divergence of repeats between different species; (3) The rate to which concerted evolution occurred was different between lineages according to the evolutionary history of each one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adegoke JA, Árnason U, Widegren B (1993) Sequence organization and evolution, in all extant whalebone whales, of a DNA satellite with terminal chromosome localization. Chromosoma 102:382–388

    Article  CAS  PubMed  Google Scholar 

  • Anderberg AA, Baldwin BG, Bayer RG, Breitwieser J, Jeffrey C, Dillon MO, Eldenäs P, Funk V, García-Jacas N, Hind DJN, Karis PO, Lack HW, Nesom G, Nordenstam B, Oberprieler CH, Panero JL, Puttock C, Robinson H, Stuessy TF, Susanna A, Urtubey E, Vogt R, Ward J, Watson LE (2007) Compositae. In: Kadereit JW, Jeffrey C (eds) The families and genera of vascular plants vol. 8. Springer, Berlin, pp 61–558

    Google Scholar 

  • Barres L, Sanmartín I, Anderson CL, Susanna A, Buerki S, Galbany-Casals M, Vilatersana R (2013) Reconstructing the evolution and biogeographic history of tribe Cardueae (Compositae). Am J Bot 100:867–882

    Article  PubMed  Google Scholar 

  • Cesari M, Luchetti A, Passamonti M, Scali V, Mantovani B (2003) Polymerase chain reaction amplification of the Bag320 satellite family reveals the ancestral library and past gene conversion events in Bacillus rossius (Insecta Phasmatodea). Gene 312:289–295

    Article  CAS  PubMed  Google Scholar 

  • Drouin G, Dover GA (1990) Independent gene evolution in the potato actin gene family demonstrated by phylogenetic procedures for resolving gene conversions and the phylogeny of angiosperm actin genes. J Mol Evol 31:132–150

    Article  CAS  PubMed  Google Scholar 

  • Feliciello I, Picariello O, Chinali G (2005) The first characterisation of the overall variability of repetitive units in a species reveals unexpected features of satellite DNA. Gene 349:153–164

    Article  CAS  PubMed  Google Scholar 

  • Feliciello I, Picariello O, Chinali G (2006) Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA. Gene 383:81–92

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Garcia-Jacas N, Susanna A, Garnatje T, Vilatersana R (2001) Generic delimitation and phylogeny of the subtribe Centaureinae (Asteraceae): a combined nuclear and chloroplast DNA analysis. Ann Bot 87:503–515

    Article  CAS  Google Scholar 

  • Garcia-Jacas N, Garnatje T, Susanna A, Vilatersana R (2002) Tribal and subtribal delimitation and phylogeny of the Cardueae (Asteraceae): a combined nuclear and chloroplast DNA analysis. Mol Phylgent Evol 22:51–64

    Article  CAS  Google Scholar 

  • Hellwig FH (2004) Centaureinae (Asteraceae) in the Mediterranean-history of ecogeographical radiation. Plant Syst Evol 246:137–162

    Google Scholar 

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Article  CAS  PubMed  Google Scholar 

  • Luchetti A, Cesari M, Carrara G, Cavicchi S, Passamonti M, Scali V, Mantovani B (2003) Unisexuality and molecular drive: Bag320 sequence diversity in Bacillus taxa (Insecta Phasmatodea). J Mol Evol 56:587–596

    Article  CAS  PubMed  Google Scholar 

  • Luchetti A, Marini M, Mantovani B (2006) Non-concerted evolution of RET76 satellite DNA family in Reticulitermes taxa (Insecta, Isoptera). Genetica 128:123–132

    Article  Google Scholar 

  • Meštrović N, Plohl M, Mravinac B, Ugarkovic D (1998) Evolution of satellite DNAs from the genus Palorus-experimental evidence for the library hypothesis. Mol Biol Evol 15:1062–1068

    Article  PubMed  Google Scholar 

  • Mravinac B, Plohl M, Meštrovi N, Ugarkovic D (2002) Sequence of PRAT satellite DNA “frozen” in some Coleopteran species. J Mol Evol 54:774–783

    Article  CAS  PubMed  Google Scholar 

  • Mravinac B, Plohl M, Ugarkovic D (2005) Preservation and high sequence conservation of satellite DNAs indicate functional constraints. J Mol Evol 61:542–550

    Article  CAS  PubMed  Google Scholar 

  • Navajas-Pérez R, de la Herrán R, Jamilena M, Lozano R, Rejón CR, Ruiz Rejón MR, Garrido-Ramos MA (2005) Reduced rates of sequence evolution of Y-linked satellite DNA in Rumex (Polygonaceae). J Mol Evol 60:391–399

    Article  PubMed  Google Scholar 

  • Navajas-Pérez R, Quesada del Bosque ME, Garrido-Ramos MA (2009) Effect of location, organization and repeat-copy number in satellite-DNA evolution. Mol Genet Genom 282:395–406

    Article  Google Scholar 

  • Pérez-Gutiérrez MA, Suárez-Santiago VN, López-Flores I, Romero AT, Garrido-Ramos MA (2012) Concerted evolution of satellite DNA in Sarcocapnos: a matter of time. Plant Mol Biol 78:19–29

    Article  PubMed  Google Scholar 

  • Plohl M, Ugarković D (1994a) Analysis of divergence of Alphitobius diaperinus satellite DNA-roles of recombination, replication slippage and gene conversion. Mol Gen Genet 242:297–304

    Article  CAS  PubMed  Google Scholar 

  • Plohl M, Ugarković D (1994b) Characterization of two abundant satellite DNAs from the mealworm Tenebrio obscurus. J Mol Evol 39:489–495

    Article  CAS  PubMed  Google Scholar 

  • Plohl M, Meštrović N, Mravinac B (2012) Satellite DNA evolution. In: Garrido-Ramos MA (ed) Repetitive DNA genome dynamics vol 7. Karger, Basel, pp 126–152

    Google Scholar 

  • Quesada del Bosque ME, Navajas-Pérez R, Panero JL, Fernández-González A, Garrido-Ramos MA (2011) A satellite DNA evolutionary analysis in the North American endemic dioecious plant Rumex hastatulus (Polygonaceae). Genome 54:253–260

    Article  CAS  Google Scholar 

  • Quesada del Bosque ME, López-Flores I, Suárez-Santiago VN, Garrido-Ramos MA (2013) Differential spreading of HinfI satellite DNA variants during radiation in Centaureinae. Ann Bot 112:1793–1802

    Article  CAS  PubMed  Google Scholar 

  • Robles F, de la Herrán R, Ludwig A, Ruiz-Rejón C, Ruiz-Rejón M, Garrido-Ramos MA (2004) Evolution of ancient satellite DNAs in sturgeon genomes. Gene 338:133–142

    Article  CAS  PubMed  Google Scholar 

  • Rokas A, Carroll SB (2006) Bushes in the tree of life. PLoS Biol 4:e352. doi:10.1371/journal.pbio0040352

    Article  PubMed Central  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höna SH, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed Central  PubMed  Google Scholar 

  • Suárez-Santiago VN, Salinas MJ, Garcia-Jacas N, Soltis PS, Soltis DE, Blanca G (2007a) Reticulate evolution in the Acrolophus subgroup (Centaurea L., Compositae) from the western Mediterranean: origin and diversification of section Willkommia Blanca. Mol Phyl Evol 43:156–172

    Article  Google Scholar 

  • Suárez-Santiago VN, Blanca G, Ruiz-Rejón M, Garrido-Ramos MA (2007b) Satellite-DNA evolutionary patterns under a complex evolutionay scenario: the case of Acrolophus subgroup (Centaurea L., Compositae) from the western Mediterranean. Gene 404:80–92

    Article  PubMed  Google Scholar 

  • Susanna A, Garcia-Jacas N (2007) Tribu Cardueae. In: Kadereit JW, Jeffrey C (eds) Flowering plants. Eudictos. Asterales (vol. 8 in series The families and genera of vascular plants, Kadereit JW. ed.). Springer, Berlin, pp 123–146

    Google Scholar 

  • Susanna A, Garcia-Jacas N (2009) Cardueae (Carduoideae). In: Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics evolution and biogeography of the compositae. IAPT, Vienna, pp 293–313

    Google Scholar 

  • Susanna A, García-Jacas N, Hidalgo O, Vilatersana R, Garnatje T (2006) The Cardueae (Compositae) revisited: insights from ITS, trnL-trnF, and matK nuclear and chloroplast DNA analysis. Ann Missouri Bot Gard 93:150–171

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Masatoshi N, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. Garrido-Ramos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10265_2014_648_MOESM1_ESM.pdf

Fig. S1 Majority-rule consensus tree based on Bayesian MCMC analysis of the HinfI repeat sequences of Cardueae. Numbers above branches are Bayesian posterior probability values (PP) (PDF 1562 kb)

10265_2014_648_MOESM2_ESM.tif

Fig. S2 Majority-rule consensus tree based on Bayesian MCMC analysis of the HinfI repeat sequences of Carlininae and Centaureinae. Numbers above branches are Bayesian posterior probability values (PP) (TIFF 15414 kb)

10265_2014_648_MOESM3_ESM.tif

Fig. S3 Majority-rule consensus tree based on Bayesian MCMC analysis of the HinfI repeat sequences of Echinopsinae and Centaureinae. Numbers above branches are Bayesian posterior probability values (PP) (TIFF 15860 kb)

10265_2014_648_MOESM4_ESM.tif

Fig. S4 Majority-rule consensus tree based on Bayesian MCMC analysis of the HinfI repeat sequences of Carduinae and Centaureinae. Numbers above branches are Bayesian posterior probability values (PP) (TIFF 13887 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Bosque, M.E.Q., López-Flores, I., Suárez-Santiago, V.N. et al. Satellite-DNA diversification and the evolution of major lineages in Cardueae (Carduoideae Asteraceae). J Plant Res 127, 575–583 (2014). https://doi.org/10.1007/s10265-014-0648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0648-9

Keywords

Navigation