Skip to main content
Log in

Transient increase in the transcript levels of γ-tubulin complex genes during reorientation of cortical microtubules by gravity in azuki bean (Vigna angularis) epicotyls

  • Short Communication
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

By hypergravity treatment, the percentage of cells with transverse microtubules was decreased, while that with longitudinal microtubules was increased in azuki bean (Vigna angularis) epicotyls. The expression of genes encoding γ-tubulin complex (VaTUG and VaGCP3) was increased transiently in response to changes in the gravitational conditions. Lanthanum and gadolinium ions, potential blockers of mechanosensitive calcium ion-permeable channels (mechanoreceptors), nullified reorientation of microtubules as well as up-regulation of expression of VaTUG and VaGCP3 by hypergravity. These results suggest that mechanoreceptors may perceive the gravity signal, which leads to a transient increase in the transcript levels of γ-tubulin complex genes and reorientation of cortical microtubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171

    Article  PubMed  CAS  Google Scholar 

  • Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3:83–110

    Article  CAS  Google Scholar 

  • Erhardt M, Stoppin-Mellet V, Campagne S, Canaday J, Mutterer J, Fabian T, Sauter M, Muller T, Peter C, Lambert AM, Schmit AC (2002) The plant Spc98p homologue colocalizes with γ-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J Cell Sci 115:2423–2431

    PubMed  CAS  Google Scholar 

  • Fasano JM, Massa GD, Gilroy S (2002) Ionic signaling in plant responses to gravity and touch. J Plant Growth Regul 21:71–88

    Article  PubMed  CAS  Google Scholar 

  • Giddings TH, Staehelin LA (1991) Microtubule-mediated control of microfibril deposition: a re-examination of the hypothesis. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 85–97

    Google Scholar 

  • Hoson T, Nishitani K, Miyamoto K, Ueda J, Kamisaka S, Yamamoto R, Masuda Y (1996) Effects of hypergravity on growth and cell wall properties of cress hypocotyls. J Exp Bot 47:513–517

    Article  PubMed  CAS  Google Scholar 

  • Hoson T, Soga K, Mori R, Saiki M, Nakamura Y, Wakabayashi K, Kamisaka S (2002) Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space. Plant Cell Physiol 43:1067–1071

    Article  PubMed  CAS  Google Scholar 

  • Kasahara H, Shiwa M, Takeuchi Y, Yamada M (1995) Effects of hypergravity on elongation growth in radish and cucumber hypocotyls. J Plant Res 108:59–64

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Saito Y, Kumasaki S, Soga K, Wakabayashi K, Hoson T (2007) Up-regulation of expression of tubulin genes and roles of microtubules in hypergravity-induced growth modification in Arabidopsis hypocotyls. Adv Space Res 39:1176–1181

    Article  Google Scholar 

  • Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M (2005) Microtubule-dependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants. Nature Cell Biol 7:961–968

    Article  PubMed  CAS  Google Scholar 

  • Pastuglia M, Azimzadeh J, Goussot M, Camilleri C, Belcram K, Evrard JL, Schmit AC, Guerche P, Bouchez D (2006) γ-Tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18:1412–1425

    Article  PubMed  CAS  Google Scholar 

  • Raynaud-Messina B, Merdes A (2007) γ-Tubulin complexes and microtubule organization. Curr Opin Cell Biol 19:24–30

    Article  PubMed  CAS  Google Scholar 

  • Roberts IN, Lloyd CW, Roberts K (1985) Ethylene-induced microtubule reorientations: mediation by helical arrays. Planta 164:439–447

    Article  Google Scholar 

  • Shibaoka H (1994) Plant hormone-induced changes in the orientation of cortical microtubules: alterations in the cross-linking between microtubules and the plasma membrane. Ann Rev Plant Physiol Plant Mol Biol 45:527–544

    CAS  Google Scholar 

  • Skagen EB, Iversen TH (1999) Simulated weightlessness and hyper-g results in opposite effects on the regeneration of the cortical microtubule array in protoplasts from Brassica napus hypocotyls. Physiol Plant 106:318–325

    Article  PubMed  CAS  Google Scholar 

  • Smith LG, Oppenheimer DG (2005) Spatial control of cell expansion by the plant cytoskeleton. Ann Rev Cell Develop Biol 21:271–295

    Article  CAS  Google Scholar 

  • Soga K, Wakabayashi K, Hoson T, Kamisaka S (1999a) Hypergravity increases the molecular size of xyloglucans by decreasing xyloglucan-degrading activity in azuki bean epicotyls. Plant Cell Physiol 40:581–585

    PubMed  CAS  Google Scholar 

  • Soga K, Harada K, Wakabayashi K, Hoson T, Kamisaka S (1999b) Increased molecular mass of hemicellulosic polysaccharides is involved in growth inhibition of maize coleoptiles and mesocotyls under hypergravity conditions. J Plant Res 112:273–278

    Article  PubMed  CAS  Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2002) Stimulation of elongation growth and xyloglucan breakdown in Arabidopsis hypocotyls under microgravity conditions in space. Planta 215:1040–1046

    Article  PubMed  CAS  Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2004) Graviperception in growth inhibition of plant shoots under hypergravity conditions produced by centrifugation is independent of that in gravitropism and may involve mechanoreceptors. Planta 218:1054–1061

    Article  PubMed  CAS  Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2005) Mechanoreceptors rather than sedimentable amyloplasts perceive the gravity signal in hypergravity-induced inhibition of root growth in azuki bean. Funct Plant Biol 32:175–179

    Article  PubMed  Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2006) Hypergravity induces reorientation of cortical microtubules and modifies growth anisotropy in azuki bean epicotyls. Planta 224:1485–1494

    Article  PubMed  CAS  Google Scholar 

  • Toyota M, Furuichi T, Tatsumi H, Sokabe M (2007) Hypergravity stimulation induces changes in intracellular calcium concentration in Arabidopsis seedlings. Adv Space Res 39:1190–1197

    Article  CAS  Google Scholar 

  • Waldron KW, Brett CT (1990) Effects of extreme acceleration on the germination, growth and cell wall composition of pea epicotyls. J Exp Bot 41:71–77

    Article  CAS  Google Scholar 

  • Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7:651–660

    Article  PubMed  CAS  Google Scholar 

  • Wymer CL, Wymer SA, Cosgrove DJ, Cyr RJ (1996) Plant cell responds to external forces and the response requires intact microtubules. Plant Physiol 110:425–430

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor H. Numata of Osaka City University for his advice on statistical analysis. The present study was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, a Grant for Ground-based Research for Space Utilization from the Japan Space Forum, and by Sasakawa Scientific Research Grant from the Japan Science Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouichi Soga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soga, K., Kotake, T., Wakabayashi, K. et al. Transient increase in the transcript levels of γ-tubulin complex genes during reorientation of cortical microtubules by gravity in azuki bean (Vigna angularis) epicotyls. J Plant Res 121, 493–498 (2008). https://doi.org/10.1007/s10265-008-0179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-008-0179-3

Keywords

Navigation