Skip to main content
Log in

Biomass production, photosynthesis, and leaf water relations of Spartina alterniflora under moderate water stress

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The perennial smooth cordgrass, Spartina alterniflora, has been successfully introduced in salty ecosystems for revegetation or agricultural use. However, it remains unclear whether it can be introduced in arid ecosystems. The aim of this study was to investigate the physiological response of this species to water deficiency in a climate-controlled greenhouse. The experiment consisted of two levels of irrigation modes, 100 and 50% field capacities (FC). Although growth, photosynthesis, and stomatal conductance of plants with 50% FC were reduced at 90 days from the start of the experiment, all of the plants survived. The water-stressed plants exhibited osmotic adjustment and an increase in the maximum elastic modulus that is assumed to be effective to enhance the driving force for water extraction from the soil with small leaf water loss. An increase in the water use efficiency was also found in the water-stressed plants, which could contribute to the maintenance of leaf water status under drought conditions. It can be concluded that S. alterniflora has the capacity to maintain leaf water status and thus survive in arid environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare D (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Bouyoucos (1983) Les propriétés physiques du sol dépendent de sa texture et de sa structure. In: Les bases de la production végétale. Tome 1. Collection Sciences et Technique agricoles, pp 67–87

  • Bradley PM, Morris JT (1991) Relative importance of ion exclusion, secretion and accumulation in Spartina alterniflora Loisel. J Exp Bot 42:1525–1532

    Article  CAS  Google Scholar 

  • Brown CE, Pezeshki SR (2007) Threshold for recovery in the marsh halophyte Spartina alterniflora grown under the combined effects of salinity and soil drying. J Plant Physiol 164:274–282

    Article  PubMed  CAS  Google Scholar 

  • Brown CE, Pezeshki SR, Delaune RD (2006) The effects of salinity and soil drying on nutrient uptake and growth of Spartina alterniflora in a simulated tidal system. Environ Exp Bot 58:140–146

    Article  CAS  Google Scholar 

  • Cavalieri AJ (1983) Proline and glycine betaine accumulation by Spartina alterniflora (Loisel) in response to NaCl and nitrogen in a control environment. Oecologia 57:20–24

    Article  Google Scholar 

  • Colmer TD, Teresa WM, Läuchli FA, Higashi RM (1996) Interactive effects of salinity, nitrogen and sulphur on the organic solutes in Spartina alterniflora leaf blades. J Exp Bot 47:369–375

    Article  CAS  Google Scholar 

  • Dichio B, Xiloyannis C, Angelopoulos K, Nuzzo V, Bufo AB, Celano G (2003) Drought-induced variations of water relations parameters in olea europea. Plant Soil 257:381–389

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Fleury P, Leclerc M (1943) La méthode nitro-vanado-molybdique de misson pour le dosage colorimétrique du phosphore. Son intérêt en biochimie. Bull Soc Chem Biol 25:201–205

    CAS  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Commonw Bur Horticult Tech Commun 22:431–446

    Google Scholar 

  • Hu ZhH, Qin P (1998) Effects of total flavonoids of Spartina alterniflora on serum lipids in vivo. Mar Sci 2:16–18

    Google Scholar 

  • Kefu Z, Hai F, San Z, Jie S (2003) Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress. Plant Sci 165:837–844

    Article  Google Scholar 

  • Koyro H.-W, Huchzermeyer B (2004a) Ecophysiological mechanisms leading to salinity tolerance–screening of cashcrop halophytes. Recent Res Dev Plant Sci 1:187–207

    Google Scholar 

  • Lin GL, Li DC (1999) Experiment of feeding goats with Spartina alterniflora. Fujian Pasturage Vet 21(4):4–14

    Google Scholar 

  • Liu JP, Tian ZhK (2002) Clean sewage with Spartina alterniflora. Hebei Environ Sci 10(2):45–48

    Google Scholar 

  • Martínez JP, Lutts S, Schanck A, Bajji M, Kinet JM (2004) Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L?. J Plant Physiol 161:1041–1051

    Article  PubMed  Google Scholar 

  • Martínez JP, Silva H, Ledent JF, Pinto M (2007) Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). Eur J Agron 26:30–38

    Article  Google Scholar 

  • Mediavilla S, Santiago H, Escudero A (2002) Stomatal and mesophyll limitations to photosynthesis in one evergreen and one deciduous Mediterranean oak species. Photosynthetica 40(4):553–559

    Article  CAS  Google Scholar 

  • Morales MA, Sánchez-Blanco MJ, Olmos E, Torrecillas A, Alarcón JJ (1998) Changes in the growth, leaf water relations and cell ultraestructure in Argyranthemum coronopifolium plants under saline conditions. J Plant Physiol 153:174–180

    CAS  Google Scholar 

  • Mustard S, Renault (2004) Effects of NaCl on water relations and cell wall elasticity and composition of red-osier dogwood (Cornus stolonifera) seedling. Physiol Plant 121:265–271

    Article  PubMed  CAS  Google Scholar 

  • Nardini A, Lo gullo MA, Salleo S (1999) Competitive strategies for water availability in two Mediterranean Quercus species. Plant Cell Environ 22:109–116

    Article  Google Scholar 

  • Patakas A, Nikolaou N, Zioziou K, Radoglou K, Noitsakis B (2002) The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Sci 163:361–367

    Article  CAS  Google Scholar 

  • Patakas A, Notsakis B (1999) Osmotic adjustment and partitioning of turgor responses to drought in grapevines leaves. Am J Enol Vitic 50:76–80

    Google Scholar 

  • Pomeroy LR, Wiegert RG (1981) The ecology of salt marsh. Springer, New York

    Google Scholar 

  • Sánchez FJ, Andrés EF, Tenorio JL, Ayerbe L (2004) Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crops Res 86:81–90

    Article  Google Scholar 

  • Save R, Castell C, Terradas J (1999) Gas exchange and water relations. In: Rodá F, Retama J, Gracia A, Bellot J (eds) Ecology of Mediterranean evergreen ecological studies, Springer, Berlin, pp 135–147

    Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen ED (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  PubMed  Google Scholar 

  • Serrano L, Peñuelas J, Ogaya R, Savé R (2005) Tissue-water relations of two co-occurring evergreen Mediterranean species in response to seasonal and experimental drought conditions. J Plant Res 118:263–269

    Article  PubMed  Google Scholar 

  • Soltani A, Hajji M, Grignon C (1992) Bilan des échanges ioniques en milieu NO3/NH4 et coûts énergétiques de la croissance chez l’orge (Hordeum vulgare L.). Agronomie 12:723–732

    Article  Google Scholar 

  • Staub AM (1963) Extraction, identification et dosages des glucides dans les extraits d’organes et les corps bactériens. In: Masson et Compagnie (eds) Techniques de laboratoire, Tome 1 et 2: Paris, pp 1307–1366

  • Stoyanov ZZ (2005) Effect of water stress on leaf water relations of young bean plants. Cent Eur Agric 6:5–14

    Google Scholar 

  • Vasquez EA, Glenn EP, Guntenspergen GR, Brown JJ, Nelson SG (2006) Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. Am J Bot 93:1784–1790

    Article  CAS  Google Scholar 

  • Wang BCh, Yang QC, Lin LZh (1996) Marking Spartina alterniflora into green fertilizer and fodder for rabbits. J Zhejiang Agric Sci (1):37–38

  • Zheng GR, Xu KM (1994) Experiment of feeding fowls with Spartina alterniflora. Poult Husb Dis Control (6):21–22

  • Zheng GR, Zhang R (1995) Experiment of feeding pigs with Spartina alterniflora Fodder Stud (5):23–24

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Hessini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hessini, K., Ghandour, M., Albouchi, A. et al. Biomass production, photosynthesis, and leaf water relations of Spartina alterniflora under moderate water stress. J Plant Res 121, 311–318 (2008). https://doi.org/10.1007/s10265-008-0151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-008-0151-2

Keywords

Navigation