Skip to main content

Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies

  • Chapter
  • First Online:

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 153))

Abstract

Virus proliferation depends on the successful recruitment of host cellular components for their own replication, protein synthesis, and virion assembly. In the course of virus particle production a large number of proteins are synthesized in a relatively short time, whereby protein folding can become a limiting step. Most viruses therefore need cellular chaperones during their life cycle. In addition to their own protein folding problems viruses need to interfere with cellular processes such as signal transduction, cell cycle regulation and induction of apoptosis in order to create a favorable environment for their proliferation and to avoid premature cell death. Chaperones are involved in the control of these cellular processes and some viruses reprogram their host cell by interacting with them. Hsp70 chaperones, as central components of the cellular chaperone network, are frequently recruited by viruses. This review focuses on the function of Hsp70 chaperones at the different stages of the viral life cycle emphasizing mechanistic aspects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agoff SN, Wu B (1994) CBF mediates adenovirus Ela trans-activation by interaction at the C-terminal promoter targeting domain of conserved region 3. Oncogene 9:3707–3711

    PubMed  CAS  Google Scholar 

  • Agostini I, Popov S, Li J, Dubrovsky L, Hao T, Bukrinsky M (2000) Heat-shock protein 70 can replace viral protein R of HIV-1 during nuclear import of the viral preintegration complex. Exp Cell Res 259:398–403

    Article  PubMed  CAS  Google Scholar 

  • Agranovsky AA, Folimonov AS, Folimonova S, Morozov S, Schiemann J, Lesemann D, Atabekov JG (1998) Beet yellows closterovirus HSP70-like protein mediates the cell-to-cell movement of a potexvirus transport-deficient mutant and a hordeivirus-based chimeric virus. J Gen Virol 79:889–895

    PubMed  CAS  Google Scholar 

  • Alfano C, McMacken R (1989a) Heat shock protein-mediated disassembly of nucleoprotein structures is required for the initiation of bacteriophage lambda DNA replication. J Biol Chem 264:10709–10718

    PubMed  CAS  Google Scholar 

  • Alfano C, McMacken R (1989b) Ordered assembly of nucleoprotein structures at the bacteriophage lambda replication origin during the initiation of DNA replication. J Biol Chem 264:10699–10708

    PubMed  CAS  Google Scholar 

  • Alzhanova DV, Hagiwara Y, Peremyslov VV, Dolja VV (2000) Genetic analysis of the cell-to-cell movement of beet yellows closterovirus. Virology 268:192–200

    Article  PubMed  CAS  Google Scholar 

  • Alzhanova DV, Napuli AJ, Creamer R, Dolja VV (2001) Cell-to-cell movement and assembly of a plant closterovirus: roles for the capsid proteins and Hsp70 homolog. EMBO J 20:6997–7007

    Article  PubMed  CAS  Google Scholar 

  • Anderson JR (2001) The mechanisms of direct, virus-induced destruction of neurons. Curr Top Microbiol Immunol 253:15–33

    PubMed  CAS  Google Scholar 

  • Ang D, Keppel F, Klein G, Richardson A, Georgopoulos C (2000) Genetic analysis of bacteriophage-encoded cochaperonins. Annu Rev Genet 34:439–456

    Article  PubMed  CAS  Google Scholar 

  • Arias CF, Isa P, Guerrero CA, Mendez E, Zarate S, Lopez T, Espinosa R, Romero P, Lopez S (2002) Molecular biology of rotavirus cell entry. Arch Med Res 33:356–361

    Article  PubMed  CAS  Google Scholar 

  • Arnold-Schild D, Hanau D, Spehner D, Schmid C, Rammensee HG, de la Salle H, Schild H (1999) Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162: 3757–3760

    PubMed  CAS  Google Scholar 

  • Arsene F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55:3–9

    Article  PubMed  CAS  Google Scholar 

  • Asea A (2003) Chaperokine-induced signal transduction pathways. Exerc Immunol Rev 9:25–33

    PubMed  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034

    Article  PubMed  CAS  Google Scholar 

  • Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, Patterson C (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545

    PubMed  CAS  Google Scholar 

  • Bardelli A, Longati P, Alberto D, Goruppi S, Schneider C, Ponzetto C, Comoglio PM (1996) HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. EMBO J. 15:6205–6212

    PubMed  CAS  Google Scholar 

  • Barouch W, Prasad K, Greene L, Eisenberg E (1997) Auxilin-induced interaction of the molecular chaperone Hsc70 with clathrin baskets. Biochemistry 36:4303–4308

    Article  PubMed  CAS  Google Scholar 

  • Bartenschlager R, Junker-Niepmann M, Schaller H (1990) The P gene product of hepatitis B virus is required as a structural component for genomic RNA encapsidation. J Virol 64:5324–5332

    PubMed  CAS  Google Scholar 

  • Bartenschlager R, Schaller H (1992) Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. Embo J 11:3413–3420

    PubMed  CAS  Google Scholar 

  • Beck J, Nassal M (2001) Reconstitution of a functional duck hepatitis B virus replication initiation complex from separate reverse transcriptase domains expressed in Escherichia coli. J Virol 75:7410–7419

    Article  PubMed  CAS  Google Scholar 

  • Beck J, Nassal M (2003) Efficient Hsp90-independent in vitro activation by Hsc70 and Hsp40 of duck hepatitis B virus reverse transcriptase, an assumed Hsp90 client protein. J Biol Chem 278:36128–36138

    Article  PubMed  CAS  Google Scholar 

  • Becker T, Hartl FU, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Beere HM, Green DR (2001) Stress management—heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol 11:6–10

    Article  PubMed  CAS  Google Scholar 

  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol. 2:469–475

    Article  PubMed  CAS  Google Scholar 

  • Benedict CA, Norris PS, Ware CF (2002) To kill or be killed: viral evasion of apoptosis. Nat Immunol 3: 1013–1018

    Article  PubMed  CAS  Google Scholar 

  • Berjanskii MV, Riley MI, Xie A, Semenchenko V, Folk WR, Van Doren SR (2000) NMR structure of the N-terminal J domain of murine polyomavirus T antigens. Implications for DnaJ-like domains and for mutations of T antigens. J Biol Chem 275:36094–36103

    Article  PubMed  CAS  Google Scholar 

  • Best SM, Wolfinbarger JB, Bloom ME (2002) Caspase activation is required for permissive replication of Aleutian mink disease parvovirus in vitro. Virology 292:224–234

    Article  PubMed  CAS  Google Scholar 

  • Bimston D, Song J, Winchester D, Takayama S, Reed JC, Morimoto RI (1998) BAG-1, a negative regulator of Hsp70 chaperone activity, uncouples nucleotide hydrolysis from substrate release. EMBO J 17:6871–6878

    Article  PubMed  CAS  Google Scholar 

  • Binder RJ, Harris ML, Menoret A, Srivastava PK (2000) Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells. J Immunol 165:2582–2587

    PubMed  CAS  Google Scholar 

  • Blond-Elguindi S, Cwirla SE, Dower WJ, Lipshutz RJ, Sprang SR, Sambrook JF, Gething MJ (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75:717–728

    Article  PubMed  CAS  Google Scholar 

  • Bolt G (2001) The measles virus (MV) glycoproteins interact with cellular chaperones in the endoplasmic reticulum and MV infection upregulates chaperone expression. Arch Virol 146:2055–2068

    Article  PubMed  CAS  Google Scholar 

  • Boulanger J, Faulds D, Eddy EM, Lingwood CA (1995) Members of the 70 kDa heat shock protein family specifically recognize sulfoglycolipids: role in gamete recognition and mycoplasma-related infertility. J Cell Physiol 165: 7–17

    Article  PubMed  CAS  Google Scholar 

  • Brehmer D, Rüdiger S, Gässler CS, Klostermeier D, Packschies L, Reinstein J, Mayer MP, Bukau B (2001) Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat Struct Biol 8:427–432

    Article  PubMed  CAS  Google Scholar 

  • Brenner BG, Wainberg MA (1999) Heat shock protein-based therapeutic strategies against human immunodeficiency virus type 1 infection. Infect Dis Obstet Gynecol 7:80–90

    Article  PubMed  CAS  Google Scholar 

  • Briknarova K, Takayama S, Brive L, Havert ML, Knee DA, Velasco J, Homma S, Cabezas E, Stuart J, Hoyt DW, Satterthwait AC, Llinas M, Reed JC, Ely KR (2001) Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nat Struct Biol 8:349–352

    Article  PubMed  CAS  Google Scholar 

  • Brum LM, Lopez MC, Varela JC, Baker HV, Moyer RW (2003) Microarray analysis of A549 cells infected with rabbitpox virus (RPV): a comparison of wild-type RPV and RPV deleted for the host range gene, SPI-1. Virology 315: 322–334

    Article  PubMed  CAS  Google Scholar 

  • Bruss V, Vieluf K (1995) Functions of the internal pre-S domain of the large surface protein in hepatitis B virus particle morphogenesis. J Virol 69:6652–6657

    PubMed  CAS  Google Scholar 

  • Brychzy A, Rein T, Winklhofer KF, Hartl FU, Young JC, Obermann WM (2003) Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J 22:3613–3623

    Article  PubMed  CAS  Google Scholar 

  • Buchner E, Gundersen CB (1997) The DnaJ-like cysteine string protein and exocytotic neurotransmitter release. Trends Neurosci 20:223–227

    Article  PubMed  CAS  Google Scholar 

  • Bukau B, Deuerling E, Pfund C, Craig EA (2000) Getting newly synthesized proteins into shape. Cell 101: 119–122

    Article  PubMed  CAS  Google Scholar 

  • Campbell KS, Mullane KP, Aksoy IA, Stubdal H, Zalvide J, Pipas JM, Silver PA, Roberts TM, Schaffhausen BS, DeCaprio JA (1997) DnaJ/hsp40 chaperone domain of SV40 large T antigen promotes efficient viral DNA replication. Genes Dev 11:1098–1110

    Article  PubMed  CAS  Google Scholar 

  • Carleton M, Brown DT (1996) Disulfide bridge-mediated folding of Sindbis virus glycoproteins. J Virol 70: 5541–5547

    PubMed  CAS  Google Scholar 

  • Carleton M, Brown DT (1997) The formation of intramolecular disulfide bridges is required for induction of the Sindbis virus mutant ts23 phenotype. J Virol 71:7696–7703

    PubMed  CAS  Google Scholar 

  • Castelli JC, Hassel BA, Wood KA, Li XL, Amemiya K, Dalakas MC, Torrence PF, Youle RJ (1997) A study of the interferon antiviral mechanism: apoptosis activation by the 2–5A system. J Exp Med 186:967–972

    Article  PubMed  CAS  Google Scholar 

  • Caswell R, Hagemeier C, Chiou CJ, Hayward G, Kouzarides T, Sinclair J (1993) The human cytomegalovirus 86 K immediate early (IE) 2 protein requires the basic region of the TATA-box binding protein (TBP) for binding, and interacts with TBP and transcription factor TFIIB via regions of IE2 equired for transcriptional regulation. J Gen Virol 74:2691–2698

    Article  PubMed  CAS  Google Scholar 

  • Chao HH, Buchmann AM, DeCaprio JA (2000) Loss of p19(ARF) eliminates the requirement for the pRB-binding motif in simian virus 40 large T antigen-mediated transformation. Mol Cell Biol 20:7624–7633

    Article  PubMed  CAS  Google Scholar 

  • Cheetham MlE, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chap 3:28–36

    Article  CAS  Google Scholar 

  • Chen D, Fong Y, Zhou Q (1999) Specific interaction of Tat with the human but not rodent P-TEFb complex mediates the species-specific Tat activation of HIV-1 transcription. Proc Natl Acad Sci USA 96:2728–2733

    Article  PubMed  CAS  Google Scholar 

  • Chen N, Baudino T, MacDonald PN, Green M, Kelley WL, Burnett JW, Buller RM (2000) Selective inhibition of nuclear steroid receptor function by a protein from a human tumorigenic poxvirus. Virology 274:17–25

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Cenciarelli C, Shao Z, Vidal M, Parks WP, Pagano M, Cheng-Mayer C (2001) Human T cell leukemia virus type 1 Tax associates with a molecular chaperone complex containing hTid-1 and Hsp70. Curr Biol 11:1771–1775

    Article  PubMed  CAS  Google Scholar 

  • Cheung RK, Dosch HM (1993) The growth transformation of human B cells involves superinduction of hsp70 and hsp90. Virology 193:700–708

    Article  PubMed  CAS  Google Scholar 

  • Cho DY, Yang GH, Ryu CJ, Hong HJ (2003) Molecular chaperone GRP78/BiP interacts with the large surface protein of hepatitis B virus in vitro and in vivo. J Virol 77:2784–2788

    Article  PubMed  CAS  Google Scholar 

  • Chouchane L, Bowers FS, Sawasdikosol S, Simpson RM, Kindt TJ (1994) Heat-shock proteins expressed on the surface of human T cell leukemia virus type I-infected cell lines induce autoantibodies in rabbits. J Infect Dis 169: 253–259

    PubMed  CAS  Google Scholar 

  • Choukhi A, Ung S, Wychowski C, Dubuisson J (1998) Involvement of endoplasmic reticulum chaperones in the folding of hepatitis C virus glycoproteins. J Virol 72:3851–3818

    PubMed  CAS  Google Scholar 

  • Chroboczek J, Gout E, Favier AL, Galinier R (2003) Novel partner proteins of adenovirus penton. Curr Top Microbiol Immunol 272:37–55

    PubMed  CAS  Google Scholar 

  • Chromy LR, Pipas JM, Garcea RL (2003) Chaperone-mediated in vitro assembly of Polyomavirus capsids. Proc Natl Acad Sci USA 100:10477–10482

    Article  PubMed  CAS  Google Scholar 

  • Clapham P, Nagy K, Cheingsong-Popov R, Exley M, Weiss RA (1983) Productive infection and cell-free transmission of human T-cell leukemia virus in a nonlymphoid cell line. Science 222:1125–1127

    Article  PubMed  CAS  Google Scholar 

  • Clevenger CV, Thickman K, Ngo W, Chang WP, Takayama S, Reed JC (1997) Role of Bag-1 in the survival and proliferation of the cytokine-dependent lymphocyte lines, Ba/F3 ad Nb2. Mol Endocrinol 11:608–618

    Article  PubMed  CAS  Google Scholar 

  • Colberg-Poley AM, Santomenna LD (1988) Selective induction of chromosomal gene expression by human cytomegalovirus. Virology 166:217–228

    Article  PubMed  CAS  Google Scholar 

  • Colberg-Poley AM, Santomenna LD, Harlow PP, Benfield PA, Tenney DJ (1992) Human cytomegalovirus US3 and UL36-38 immediate-early proteins regulate gene expression. J Virol 66:95–105

    PubMed  CAS  Google Scholar 

  • Collins PL, Hightower LE (1982) Newcastle disease virus stimulates the cellular accumulation of stress (heat shock) mRNAs and proteins. J Virol 44:703–707

    PubMed  CAS  Google Scholar 

  • Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Hohfeld J, Patterson C (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3:93–96

    Article  PubMed  CAS  Google Scholar 

  • Corsi AK, Schekman R (1996) Mechanism of polypeptide translocation into the endoplasmic reticulum. J Biol Chem 271:30299–30302

    Article  PubMed  CAS  Google Scholar 

  • Craig E, Yan W, James P (1999) Genetic dissection of the Hsp70 chaperone system of yeast. In: Bukau B (ed) Molecular Chaperones and Folding Catalysts. Regulation, Cellular Function and Mechanisms. Harwood Academic Publishers, Amsterdam, pp 139–162

    Google Scholar 

  • Cripe TP, Delos SE, Estes PA, Garcea RL (1995) In vivo and in vitro association of hsc70 with polyomavirus capsid proteins. J Virol 69:7807–7813

    PubMed  CAS  Google Scholar 

  • Cullen BR (1998) HIV-1 auxiliary proteins: making connections in a dying cell. Cell 93:685–692

    Article  PubMed  CAS  Google Scholar 

  • D’Silva PD, Schilke B, Walter W, Andrew A, Craig EA (2003) J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proc Natl Acad Sci USA 100:13839–13844

    Article  PubMed  CAS  Google Scholar 

  • Dai Q, Zhang C, Wu Y, McDonough H, Whaley RA, Godfrey V, Li H-H, Madamanchi N, Xu W, Neckers L, Cyr DM, Patterson C (2003) CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 22:5446–5458

    Article  PubMed  CAS  Google Scholar 

  • Damania B, Lieberman P, Alwine JC (1998a) Simian virus 40 large T antigen stabilizes the TATA-binding protein-TFIIA complex on the TATA element. Mol Cell Biol 18:3926–3935

    PubMed  CAS  Google Scholar 

  • Damania B, Mital R, Alwine JC (1998b) Simian virus 40 large T antigen interacts with human TFIIB-related factor and small nuclear RNA-activating protein complex for transcriptional activation of TATA-containing polymerase III promoters. Mol Cell Biol 18:1331–1338

    PubMed  CAS  Google Scholar 

  • de Silva A, Braakman I, Helenius A (1993) Posttranslational folding of vesicular stomatitis virus G protein in the ER: involvement of noncovalent and covalent complexes. J Cell Biol 120:647–655

    Article  PubMed  Google Scholar 

  • de Silva AM, Balch WE, Helenius A (1990) Quality control in the endoplasmic reticulum: folding and misfolding of vesicular stomatitis virus G protein in cells and in vitro. J Cell Biol 111:857–866

    Article  PubMed  Google Scholar 

  • Debbas M, White E (1993) Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev 7: 546–554

    Article  PubMed  CAS  Google Scholar 

  • DeCaprio A (1999) The role of the J domain of SV40 large T in cellular transformation. Biologicals 27: 23–28

    Article  PubMed  CAS  Google Scholar 

  • Devireddy LR, Kumar KU, Pater MM, Pater A (2000) BAG-1, a novel Bcl-2-interacting protein, activates expression of human JC virus. J Gen Virol 81:351–357

    PubMed  CAS  Google Scholar 

  • Diaz-Guerra M, Rivas C, Esteban M (1997) Activation of the IFN-inducible enzyme RNase L causes apoptosis of animal cells. Virology 236:354–363

    Article  PubMed  CAS  Google Scholar 

  • Dibbens JA, Muraiso K, Chattoraj DK (1997) Chaperone-mediated reduction of RepA dimerization is associated with RepA conformational change. Mol Microbiol 26:185–195

    Article  PubMed  CAS  Google Scholar 

  • Dodson M, Echols H, Wickner S, Alfano C, Mensa-Wilmot K, Gomes B, LeBowitz J, Roberts JD, McMacken R (1986) Specialized nucleoprotein structures at the origin of replication of bacteriophage lambda: localized unwinding of duplex DNA by a six-protein reaction. Proc Natl Acad Sci USA 83:7638–7642

    Article  PubMed  CAS  Google Scholar 

  • Dodson M, McMacken R, Echols H (1989) Specialized nucleoprotein structures at the origin of replication of bacteriophage lambda. Protein association and disassociation reactions responsible for localized initiation of replication. J Biol Chem 264:10719–10725

    PubMed  CAS  Google Scholar 

  • Dodson M, Roberts J, McMacken R, Echols H (1985) Specialized nucleoprotein structures at the origin of replication of bacteriophage lambda: complexes with lambda O protein and with lambda O, lambda P, and Escherichia coli DnaB proteins. Proc Natl Acad Sci USA 82:4678–4682

    Article  PubMed  CAS  Google Scholar 

  • Domanico SZ, DeNagel DC, Dahlseid JN, Green JM, Pierce SK (1993) Cloning of the gene encoding peptide-binding protein 74 shows that it is a new member of the heat shock protein 70 family. Mol Cell Biol 13:3598–3610

    PubMed  CAS  Google Scholar 

  • Dornreiter I, Hoss A, Arthur AK, Fanning E (1990) SV40 T antigen binds directly to the large subunit of purified DNA polymerase alpha. EMBO J 9:3329–3336

    PubMed  CAS  Google Scholar 

  • Drahos DJ, Hendrix RW (1982) Effect of bacteriophage lambda infection on synthesis of groE protein and other Escherichia coli proteins. J Bacteriol 149:1050–1063

    PubMed  CAS  Google Scholar 

  • Dybdahl B, Wahba A, Lien E, Flo TH, Waage A, Qureshi N, Sellevold OF, Espevik T, Sundan A (2002) Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation 105:685–690

    Article  PubMed  CAS  Google Scholar 

  • Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12:2245–2262

    Article  PubMed  CAS  Google Scholar 

  • Earl PL, Moss B, Doms RW (1991) Folding, interaction with GRP78-BiP, assembly, and transport of the human immunodeficiency virus type 1 envelope protein. J Virol 65:2047–2055

    PubMed  CAS  Google Scholar 

  • Eom CY, Lehman IR (2002) The human DnaJ protein, hTid-1, enhances binding of a multimer of the herpes simplex virus type 1 UL9 protein to oris, an origin of viral DNA replication. Proc Natl Acad Sci USA 99:1894–1898

    Article  PubMed  CAS  Google Scholar 

  • Evans GJ, Morgan A, Burgoyne RD (2003) Tying everything together: the multiple roles of cysteine string protein (CSP) in regulated exocytosis. Traffic 4:653–659

    Article  PubMed  CAS  Google Scholar 

  • Fang D, Haraguchi Y, Jinno A, Soda Y, Shimizu N, Hoshino H (1999) Heat shock cognate protein 70 is a cell fusion-enhancing factor but not an entry factor for human T-cell lymphotropic virus type I. Biochem Biophys Res Commun 261:357–363

    Article  PubMed  CAS  Google Scholar 

  • Fazakerley JK (2001) Neurovirology and developmental neurobiology. Adv Virus Res 56:73–124

    Article  PubMed  CAS  Google Scholar 

  • Fazakerley JK, Allsopp TE (2001) Programmed cell death in virus infections of the nervous system. Curr Top Microbiol Immunol 253:95–119

    PubMed  CAS  Google Scholar 

  • Fromm L, Shawlot W, Gunning K, Butel JS, Overbeek PA (1994) The retinoblastoma protein-binding region of simian virus 40 large T antigen alters cell cycle regulation in lenses of transgenic mice. Mol Cell Biol 14: 6743–6754

    PubMed  CAS  Google Scholar 

  • Furlini G, Vignoli M, Re MC, Gibellini D, Ramazzotti E, Zauli G, La Placa M (1994) Human immunodeficiency virus type 1 interaction with the membrane of CD4+ cells induces the synthesis and nuclear translocation of 70 K heat shock protein. J Gen Virol 75:193–199

    Article  PubMed  CAS  Google Scholar 

  • Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI, Sherman MY (1997) Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem 272:18033–18037

    Article  PubMed  CAS  Google Scholar 

  • Gabai VL, Meriin AB, Yaglom JA, Volloch VZ, Sherman MY (1998) Role of Hsp70 in regulation of stress-kinase JNK: implications in apoptosis and aging. FEBS Lett 438:1–4

    Article  PubMed  CAS  Google Scholar 

  • Galabru J, Hovanessian A (1987) Autophosphorylation of the protein kinase dependent on double-stranded RNA. J Biol Chem 262:15538–15544

    PubMed  CAS  Google Scholar 

  • Gale M, Jr., Blakely CM, Hopkins DA, Melville MW, Wambach M, Romano PR, Katze MG (1998) Regulation of interferon-induced protein kinase PKR: modulation of P58IPK inhibitory function by a novel protein, P52rIPK. Mol Cell Biol 18:859–871

    PubMed  CAS  Google Scholar 

  • Gässler CS, Wiederkehr T, Brehmer D, Bukau B, Mayer MP (2001) Bag-1 M accelerates nucleotide release for human Hsc70 and Hsp70 and can act concentration-dependent as positive and negative cofactor. J Biol Chem 276: 32538–32544

    Article  PubMed  Google Scholar 

  • Genevaux P, Lang F, Schwager F, Vartikar JV, Rundell K, Pipas JM, Georgopoulos C, Kelley WL (2003) Simian virus 40 T antigens and J domains: analysis of Hsp40 cochaperone functions in Escherichia coli. J Virol 77: 10706–10713

    Article  PubMed  CAS  Google Scholar 

  • Genevaux P, Schwager F, Georgopoulos C, Kelley WL (2002) Scanning mutagenesis identifies amino acid residues essential for the in vivo activity of the Escherichia coli DnaJ (Hsp40) J-domain. Genetics 162:1045–1053

    PubMed  CAS  Google Scholar 

  • Georgopoulos CP (1977) A new bacterial gene (groPC) which affects lambda DNA replication. Mol Gen Genet 151:35–39

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos CP, Hendrix RW, Kaiser AD, Wood WB (1972) Role of the Host Cell in Bacteriophage Morphogenesis: Effects of a Bacterial Mutation on T4 Head Assembly. Nature New Biol. 239:38–41

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos CP, Herskowitz I (1971) Escherichia coli mutants blocked in lambda DNA synthesis. In: Hershey AD (ed) The bacteriophage lambda. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Gething MJ (1999) Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol 10:465–72

    Article  PubMed  CAS  Google Scholar 

  • Gilinger G, Alwine JC (1993) Transcriptional activation by simian virus 40 large T antigen: requirements for simple promoter structures containing either TATA or initiator elements with variable upstream factor binding sites. J Virol 67:6682–6688

    PubMed  CAS  Google Scholar 

  • Glotzer JB, Saltik M, Chiocca S, Michou AI, Moseley P, Cotten M (2000) Activation of heat-shock response by an adenovirus is essential for virus replication. Nature 407:207–211

    Article  PubMed  CAS  Google Scholar 

  • Goh PY, Tan YJ, Lim SP, Lim SG, Tan YH, Hong WJ (2001) The hepatitis C virus core protein interacts with NS5A and activates its caspase-mediated proteolytic cleavage. Virology 290:224–236

    Article  PubMed  CAS  Google Scholar 

  • Gowda S, Satyanarayana T, Ayllon MA, Moreno P, Flores R, Dawson WO (2003) The conserved structures of the 5′ nontranslated region of Citrus tristeza virus are involved in replication and virion assembly. Virology 317:50–64

    Article  PubMed  CAS  Google Scholar 

  • Greene LE, Eisenberg E (1990) Dissociation of clathrin from coated vesicles by the uncoating ATPase. J. Biol. Chem. 265:6682–6687

    PubMed  CAS  Google Scholar 

  • Greene MK, Maskos K, Landry SJ (1998) Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc Natl Acad Sci USA 95:6108–6113

    Article  PubMed  CAS  Google Scholar 

  • Guerrero CA, Bouyssounade D, Zarate S, Isa P, Lopez T, Espinosa R, Romero P, Mendez E, Lopez S, Arias CF (2002) Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 76:4096–4102

    Article  PubMed  CAS  Google Scholar 

  • Gurer C, Cimarelli A, Luban J (2002) Specific incorporation of heat shock protein 70 family members into primate lentiviral virions. J Virol 76:4666–4670

    Article  PubMed  CAS  Google Scholar 

  • Gyoo Park S, Kyung Rho J, Jung G (2002) Hsp90 makes the human HBV Pol competent for in vitro priming rather than maintaining the human HBV Pol/pregenomic RNA complex. Arch Biochem Biophys 401:99–107

    Article  PubMed  Google Scholar 

  • Hagemeier C, Walker S, Caswell R, Kouzarides T, Sinclair J (1992) The human cytomegalovirus 80-kilodalton but not the 72-kilodalton immediate-early protein transactivates heterologous promoters in a TATA box-dependent mechanism and interacts directly with TFIID. J Virol 66:4452–4456

    PubMed  CAS  Google Scholar 

  • Hammond C, Helenius A (1994) Folding of VSV G protein: sequential interaction with BiP and calnexin. Science 266:456–458

    Article  PubMed  CAS  Google Scholar 

  • Hantschel M, Pfister K, Jordan A, Scholz R, Andreesen R, Schmitz G, Schmetzer H, Hiddemann W, Multhoff G (2000) Hsp70 plasma membrane expression on primary tumor biopsy material and bone marrow of leukemic patients. Cell Stress Chaperones 5:438–442

    Article  PubMed  CAS  Google Scholar 

  • Hardwick JM (2001) Apoptosis in viral pathogenesis. Cell Death Differ 8:109–110

    Article  PubMed  CAS  Google Scholar 

  • Harris KF, Christensen JB, Radany EH, Imperiale MJ (1998) Novel mechanisms of E2F induction by BK virus large-T antigen: requirement of both the pRb-binding and the J domains. Mol Cell Biol 18:1746–1756

    PubMed  CAS  Google Scholar 

  • Harrison CJ, Hayer-Hartl M, Di Liberto M, Hartl F-U, Kuriyan J (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276:431–435

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI (2001) U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 276:33111–33120

    Article  PubMed  CAS  Google Scholar 

  • Helmbrecht K, Rensing L (1999) Different constitutive heat shock protein 70 expression during proliferation and differentiation of rat C6 glioma cells. Neurochem Res 24:1293–1299

    Article  PubMed  CAS  Google Scholar 

  • Henke A, Launhardt H, Klement K, Stelzner A, Zell R, Munder T (2000) Apoptosis in coxsackievirus B3-caused diseases: interaction between the capsid protein VP2 and the proapoptotic protein siva. J Virol 74:4284–4290

    Article  PubMed  CAS  Google Scholar 

  • Henke A, Nestler M, Strunze S, Saluz HP, Hortschansky P, Menzel B, Martin U, Zell R, Stelzner A, Munder T (2001) The apoptotic capability of coxsackievirus B3 is influenced by the efficient interaction between the capsid protein VP2 and the proapoptotic host protein Siva. Virology 289:15–22

    Article  PubMed  CAS  Google Scholar 

  • Herrmann CH, Dery CV, Mathews MB (1987) Transactivation of host and viral genes by the adenovirus E1B 19 K tumor antigen. Oncogene 2:25–35

    PubMed  CAS  Google Scholar 

  • Hoff KG, Ta DT, Tapley TL, Silberg JJ, Vickery LE (2002) Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU. J Biol Chem 277:27353–27359

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann HJ, Lyman SK, Lu C, Petit MA, Echols H (1992) Activity of the Hsp70 chaperone complex-DnaK, DnaJ, and GrpE in initiating phage lambda DNA replication by sequestering and releasing lambda P protein. Proc Natl Acad Sci USA 89:12108–12111

    Article  PubMed  CAS  Google Scholar 

  • Hogue BG, Nayak DP (1992) Synthesis and processing of the influenza virus neuraminidase, a type II transmembrane glycoprotein. Virology 188:510–517

    Article  PubMed  CAS  Google Scholar 

  • Höhfeld J, Jentsch S (1997) GrpE-like regulation of the Hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16:6209–6216

    Article  PubMed  Google Scholar 

  • Höhfeld J, Minami Y, Hartl FU (1995) Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83:589–598

    Article  PubMed  Google Scholar 

  • Hoshino H, Shimoyama M, Miwa M, Sugimura T (1983) Detection of lymphocytes producing a human retrovirus associated with adult T-cell leukemia by syncytia induction assay. Proc Natl Acad Sci USA 80:7337–7341

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Anselmo D (2000) In vitro reconstitution of a functional duck hepatitis B virus reverse transcriptase: posttranslational activation by Hsp90. J Virol 74:11447–11455

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Seeger C (1996) Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci USA 93:1060–1064

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Toft D, Anselmo D, Wang X (2002) In vitro reconstitution of functional hepadnavirus reverse transcriptase with cellular chaperone proteins. J Virol 76:269–279

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Toft DO, Seeger C (1997) Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO J 16:59–68

    Article  PubMed  Google Scholar 

  • Ishiai M, Wada C, Kawasaki Y, Yura T (1994) Replication initiator protein RepE of mini-F plasmid: functional differentiation between monomers (initiator) and dimers (autogenous repressor). Proc Natl Acad Sci USA 91: 3839–3843

    Article  PubMed  CAS  Google Scholar 

  • Jäättelä M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17:6124–6134

    Article  PubMed  Google Scholar 

  • Jamora C, Dennert G, Lee AS (1996) Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci USA 93:7690–7694

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Hohfeld J, Patterson C (2001) CHIP is a U-box-dependent E3 ubiquitin ligase: Identification of Hsc70 as a target for ubiquitylation. J Biol Chem 13:13

    Google Scholar 

  • Jindal S, Malkovsky M (1994) Stress responses to viral infection. Trends Microbiol 2:89–91

    Article  PubMed  CAS  Google Scholar 

  • Jindal S, Young RA (1992) Vaccinia virus infection induces a stress response that leads to association of Hsp70 with viral proteins. J Virol 66:5357–5362

    PubMed  CAS  Google Scholar 

  • Jockusch H, Wiegand C, Mersch B, Rajes D (2001) Mutants of tobacco mosaic virus with temperature-sensitive coat proteins induce heat shock response in tobacco leaves. Mol Plant Microbe Interact 14:914–917

    Article  PubMed  CAS  Google Scholar 

  • Johnson AD, Tytell M (1993) Exogenous HSP70 becomes cell associated, but not internalized, by stressed arterial smooth muscle cells. In Vitro Cell Dev Biol Anim 29A:807–812

    Article  PubMed  CAS  Google Scholar 

  • Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 92:1564–1572

    Article  PubMed  CAS  Google Scholar 

  • Jones KA (1997) Taking a new TAK on tat transactivation. Genes Dev 11:2593–2599

    Article  PubMed  CAS  Google Scholar 

  • Kanelakis KC, Morishima Y, Dittmar KD, Galigniana MD, Takayama S, Reed JC, Pratt WB (1999) Differential effects of the hsp70-binding protein BAG-1 on glucocorticoid receptor folding by the hsp90-based chaperone machinery. J Biol Chem 274:34134–34140

    Article  PubMed  CAS  Google Scholar 

  • Kanelakis KC, Murphy PJ, Galigniana MD, Morishima Y, Takayama S, Reed JC, Toft DO, Pratt WB (2000) hsp70 interacting protein Hip does not affect glucocorticoid receptor folding by the hsp90-based chaperone machinery except to oppose the effect of BAG-1. Biochemistry 39:14314–14321

    Article  PubMed  CAS  Google Scholar 

  • Kao HT, Capasso O, Heintz N, Nevins JR (1985) Cell cycle control of the human HSP70 gene: implications for the role of a cellular E1A-like function. Mol Cell Biol 5:628–633

    PubMed  CAS  Google Scholar 

  • Kao HT, Nevins JR (1983) Transcriptional activation and subsequent control of the human heat shock gene during adenovirus infection. Mol Cell Biol 3:2058–2065

    PubMed  CAS  Google Scholar 

  • Karasev AV, Kashina AS, Gelfand VI, Dolja VV (1992) HSP70-related 65 kDa protein of beet yellows closterovirus is a microtubule-binding protein. FEBS Lett 304:12–14

    Article  PubMed  CAS  Google Scholar 

  • Karzai AW, McMacken R (1996) A bipartite signaling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein. J Biol Chem 271:11236–11246

    Article  PubMed  CAS  Google Scholar 

  • Kaur J, Das SN, Srivastava A, Ralhan R (1998) Cell surface expression of 70 kDa heat shock protein in human oral dysplasia and squamous cell carcinoma: correlation with clinicopathological features. Oral Oncol 34:93–98

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki Y, Wada C, Yura T (1990) Roles of Escherichia coli heat shock proteins DnaK, DnaJ and GrpE in mini-F plasmid replication. Mol Gen Genet 220:277–282

    Article  PubMed  CAS  Google Scholar 

  • Kelley WL (1998) The J-domain family and the recruitment of chaperone power. Trends Biochem Sci 23: 222–227

    Article  PubMed  CAS  Google Scholar 

  • Kelley WL (1999) Molecular chaperones: How J domains turn on Hsp70s. Curr Biol 9:R305–R308

    Article  PubMed  CAS  Google Scholar 

  • Kelley WL, Georgopoulos C (1997) The T/t common exon of simian virus 40, JC, and BK polyomavirus T antigens can functionally replace the J-domain of the Escherichia coli DnaJ molecular chaperone. Proc Natl Acad Sci USA 94:3679–3684

    Article  PubMed  CAS  Google Scholar 

  • Kelley WL, Landry SJ (1994) Chaperone power in a virus? Trends Biochem Sci 19:277–278

    Article  PubMed  CAS  Google Scholar 

  • Khandjian EW, Turler H (1983) Simian virus 40 and polyoma virus induce synthesis of heat shock proteins in permissive cells. Mol Cell Biol 3:1–8

    PubMed  CAS  Google Scholar 

  • Kim SY, Sharma S, Hoskins JR, Wickner S (2002) Interaction of the DnaK and DnaJ chaperone system with a native substrate, P1 RepA. J Biol Chem 277:44778–44783

    Article  PubMed  CAS  Google Scholar 

  • King FW, Wawrzynow A, Hohfeld J, Zylicz M (2001) Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53. EMBO J 20:6297–6305

    Article  PubMed  CAS  Google Scholar 

  • Kingston RE, Cowie A, Morimoto RI, Gwinn KA (1986) Binding of polyomavirus large T antigen to the human hsp70 promoter is not required for trans activation. Mol Cell Biol 6:3180–3190

    PubMed  CAS  Google Scholar 

  • Kishi A, Ichinohe T, Hirai I, Kamiguchi K, Tamura Y, Kinebuchi M, Torigoe T, Ichimiya S, Kondo N, Ishitani K, Yoshikawa T, Kondo M, Matsuura A, Sato N (2001) The cell surface-expressed HSC70-like molecule preferentially reacts with the rat T-cell receptor Vdelta6 family. Immunogenetics 53:401–409

    Article  PubMed  CAS  Google Scholar 

  • Kitay MK, Rowe DT (1996) Protein-protein interactions between Epstein-Barr virus nuclear antigen-LP and cellular gene products: binding of 70-kilodalton heat shock proteins. Virology 220:91–99

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Ohgitani E, Tanaka Y, Kita M, Imanishi J (1994) Herpes simplex virus-induced expression of 70 kDa heat shock protein (HSP70) requires early protein synthesis but not viral DNA replication. Microbiol Immunol 38:321–325

    PubMed  CAS  Google Scholar 

  • Komori H, Matsunaga F, Higuchi Y, Ishiai M, Wada C, Miki K (1999) Crystal structure of a prokaryotic replication initiator protein bound to DNA at 2.6 Å resolution. EMBO J 18:4597–4607

    Article  PubMed  CAS  Google Scholar 

  • Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332:462–464

    Article  PubMed  CAS  Google Scholar 

  • Kraus VB, Inostroza JA, Yeung K, Reinberg D, Nevins JR (1994) Interaction of the Dr1 inhibitory factor with the TATA binding protein is disrupted by adenovirus E1A. Proc Natl Acad Sci USA 91:6279–6282

    Article  PubMed  CAS  Google Scholar 

  • Kroll J (2002) Molecular chaperones and the process of cellular immortalization in vitro. Biogerontology 3: 183–185

    Article  PubMed  CAS  Google Scholar 

  • Lambert C, Prange R (2003) Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: Implications for translocational regulation. Proc Natl Acad Sci USA 100: 5199–5204

    Article  PubMed  CAS  Google Scholar 

  • LaThangue NB, Latchman DS (1987) Nuclear accumulation of a heat-shock 70-like protein during herpes simplex virus replication. Biosci Rep 7:475–483

    Article  PubMed  CAS  Google Scholar 

  • LaThangue NB, Shriver K, Dawson C, Chan WL (1984) Herpes simplex virus infection causes the accumulation of a heat-shock protein. EMBO J 3:267–277

    PubMed  CAS  Google Scholar 

  • Laufen T, Mayer MP, Beisel C, Klostermeier D, Reinstein J, Bukau B (1999) Mechanism of regulation of Hsp70 chaperones by DnaJ co-chaperones. Proc Natl Acad Sci USA 96:5452–5457

    Article  PubMed  CAS  Google Scholar 

  • Laufen T, Zuber U, Buchberger A, Bukau B (1998) DnaJ proteins. In: Fink AL, Goto Y (eds) Molecular chaperones in proteins: Structure, function, and mode of action. Marcel Dekker, New York, pp 241–274

    Google Scholar 

  • Le Seyec J, Chouteau P, Cannie I, Guguen-Guillouzo C, Gripon P (1999) Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-S1 domain. J Virol 73:2052–2057

    PubMed  Google Scholar 

  • LeBowitz JH, McMacken R (1984) Initiation of DNA synthesis on single-stranded DNA templates in vitro promoted by the bacteriophage lambda O and P replication proteins. Adv Exp Med Biol 179:77–89

    PubMed  CAS  Google Scholar 

  • Lee TG, Tang N, Thompson S, Miller J, Katze MG (1994) The 58,000-dalton cellular inhibitor of the interferon-induced double-stranded RNA-activated protein kinase (PKR) is a member of the tetratricopeptide repeat family of proteins. Mol Cell Biol 14:2331–2342

    PubMed  CAS  Google Scholar 

  • Lee TG, Tomita J, Hovanessian AG, Katze MG (1990) Purification and partial characterization of a cellular inhibitor of the interferon-induced protein kinase of Mr 68,000 from influenza virus-infected cells. Proc Natl Acad Sci USA 87:6208–6212

    Article  PubMed  CAS  Google Scholar 

  • Lee TG, Tomita J, Hovanessian AG, Katze MG (1992) Characterization and regulation of the 58,000-dalton cellular inhibitor of the interferon-induced, dsRNA-activated protein kinase. J Biol Chem 267:14238–14243

    PubMed  CAS  Google Scholar 

  • Leone G, Coffey MC, Gilmore R, Duncan R, Maybaum L, Lee PW (1996) C-terminal trimerization, but not N-terminal trimerization, of the reovirus cell attachment protein Is a posttranslational and Hsp70/ATP-dependent process. J Biol Chem 271:8466–8471

    Article  PubMed  CAS  Google Scholar 

  • Li C-Y, Lee J-S, Ko Y-G, Kim J-I, Seo J-S (2000) Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 275:25665–25671

    Article  PubMed  CAS  Google Scholar 

  • Li H, Soderbarg K, Houshmand H, You ZY, Magnusson G (2001) Effect on polyomavirus T-antigen function of mutations in a conserved leucine-rich segment of the DnaJ domain. J Virol 75:2253–2261

    Article  PubMed  CAS  Google Scholar 

  • Liberek K, Georgopoulos C, Zylicz M (1988) Role of the Escherichia coli DnaK and DnaJ heat shock proteins in the initiation of bacteriophage lambda DNA replication. Proc Natl Acad Sci USA 85:6632–6636

    Article  PubMed  CAS  Google Scholar 

  • Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci USA 88:2874–2878

    Article  PubMed  CAS  Google Scholar 

  • Liberek K, Osipiuk J, Zylicz M, Ang D, Skorko J, Georgopoulos C (1990) Physical interactions between bacteriophage and Escherichia coli proteins required for initiation of lambda DNA replication. J Biol Chem 265:3022–3029

    PubMed  CAS  Google Scholar 

  • Liberman E, Fong YL, Selby MJ, Choo QL, Cousens L, Houghton M, Yen TS (1999) Activation of the grp78 and grp94 promoters by hepatitis C virus E2 envelope protein. J Virol 73:3718–3722

    PubMed  CAS  Google Scholar 

  • Lin BY, Makhov AM, Griffith JD, Broker TR, Chow LT (2002) Chaperone proteins abrogate inhibition of the human papillomavirus (HPV) E1 replicative helicase by the HPV E2 protein. Mol Cell Biol 22:6592–6604

    Article  PubMed  CAS  Google Scholar 

  • Lipsker D, Ziylan U, Spehner D, Proamer F, Bausinger H, Jeannin P, Salamero J, Bohbot A, Cazenave JP, Drillien R, Delneste Y, Hanau D, de la Salle H (2002) Heat shock proteins 70 and 60 share common receptors which are expressed on human monocyte-derived but not epidermal dendritic cells. Eur J Immunol 32:322–332

    Article  PubMed  CAS  Google Scholar 

  • Liu JS, Kuo SR, Makhov AM, Cyr DM, Griffith JD, Broker TR, Chow LT (1998) Human Hsp70 and Hsp40 chaperone proteins facilitate human papillomavirus-11 E1 protein binding to the origin and stimulate cell-free DNA replication. J Biol Chem 273:30704–30710

    Article  PubMed  CAS  Google Scholar 

  • Löffler-Mary H, Werr M, Prange R (1997) Sequence-specific repression of cotranslational translocation of the hepatitis B virus envelope proteins coincides with binding of heat shock protein Hsc70. Virology 235:144–52

    Article  PubMed  Google Scholar 

  • Lowe SW, Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 7:535–545

    Article  PubMed  CAS  Google Scholar 

  • Lüders J, Demand J, Höhfeld J (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275:4613–4617

    Article  PubMed  Google Scholar 

  • Lüders J, Demand J, Schönfelder S, Frien M, Zimmermann R, Höhfeld J (1998) Cofactor-induced modulation of the functional specificity of the molecular chaperone Hsc70. Biol Chem 379:1217–1226

    Article  PubMed  Google Scholar 

  • Lum LS, Hsu S, Vaewhongs M, Wu B (1992) The hsp70 gene CCAAT-binding factor mediates transcriptional activation by the adenovirus E1a protein. Mol Cell Biol 12:2599–2605

    PubMed  CAS  Google Scholar 

  • Macejak DG, Luftig RB (1991) Association of HSP70 with the adenovirus type 5 fiber protein in infected HEp-2 cells. Virology 180:120–125

    Article  PubMed  CAS  Google Scholar 

  • Macejak DG, Sarnow P (1992) Association of heat shock protein 70 with enterovirus capsid precursor P1 in infected human cells. J Virol 66:1520–1527

    PubMed  CAS  Google Scholar 

  • Machamer CE, Doms RW, Bole DG, Helenius A, Rose JK (1990) Heavy chain binding protein recognizes incompletely disulfide-bonded forms of vesicular stomatitis virus G protein. J Biol Chem 265:6879–6883

    PubMed  CAS  Google Scholar 

  • Mallory JB, Alfano C, McMacken R (1990) Host virus interactions in the initiation of bacteriophage lambda DNA replication. Recruitment of Escherichia coli DnaB helicase by lambda P replication protein. J Biol Chem 265:13297–13307

    PubMed  CAS  Google Scholar 

  • Manara GC, Sansoni P, Badiali-De Giorgi L, Gallinella G, Ferrari C, Brianti V, Fagnoni FF, Ruegg CL, De Panfilis G, Pasquinelli G (1993) New insights suggesting a possible role of a heat shock protein 70-kD family-related protein in antigen processing/presentation phenomenon in humans. Blood 82:2865–2871

    PubMed  CAS  Google Scholar 

  • Mao H, Palmer D, Rosenthal KS (2001) Changes in BiP (GRP78) levels upon HSV-1 infection are strain dependent. Virus Res 76:127–135

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga F, Ishiai M, Kobayashi G, Uga H, Yura T, Wada C (1997) The central region of RepE initiator protein of mini-F plasmid plays a crucial role in dimerization required for negative replication control. J Mol Biol 274: 27–38

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP, Laufen T, Paal K, McCarty JS, Bukau B (1999) Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy. J Mol Biol 289:1131–1144

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP, Nikolay R, Bukau B (2002) Aha, another regulator for hsp90 chaperones. Mol Cell 10:1255–1256

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP, Rüdiger S, Bukau B (2000a) Molecular basis for interactions of the DnaK chaperone with substrates. Biol Chem 381:877–885

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP, Schröder H, Rüdiger S, Paal K, Laufen T, Bukau B (2000b) Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat Struct Biol 7:586–593

    Article  PubMed  CAS  Google Scholar 

  • Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3:100–105

    Article  PubMed  CAS  Google Scholar 

  • Medina V, Peremyslov VV, Hagiwara Y, Dolja VV (1999) Subcellular localization of the HSP70-homolog encoded by beet yellows closterovirus. Virology 260:173–181

    Article  PubMed  CAS  Google Scholar 

  • Melville MW, Hansen WJ, Freeman BC, Welch WJ, Katze MG (1997) The molecular chaperone hsp40 regulates the activity of P58IPK, the cellular inhibitor of PKR. Proc Natl Acad Sci USA 94:97–102

    Article  PubMed  CAS  Google Scholar 

  • Melville MW, Tan SL, Wambach M, Song J, Morimoto RI, Katze MG (1999) The cellular inhibitor of the PKR protein kinase, P58(IPK), is an influenza virus-activated co-chaperone that modulates heat shock protein 70 activity. J Biol Chem 274:3797–3803

    Article  PubMed  CAS  Google Scholar 

  • Mensa-Wilmot K, Seaby R, Alfano C, Wold MS, Gomes B, McMacken R (1989) Reconstitution of a nineprotein system that initiates bacteriophage λ DNA replication. J Biol Chem 264:2853–2861

    PubMed  CAS  Google Scholar 

  • Milani V, Noessner E, Ghose S, Kuppner M, Ahrens B, Scharner A, Gastpar R, Issels RD (2002) Heat shock protein 70: role in antigen presentation and immune stimulation. Int J Hyperthermia 18:563–575

    Article  PubMed  CAS  Google Scholar 

  • Milarski KL, Morimoto RI (1986) Expression of human HSP70 during the synthetic phase of the cell cycle. Proc Natl Acad Sci USA 83:9517–9521

    Article  PubMed  CAS  Google Scholar 

  • Miller D, Brough S, al-Harbi O (1992) Characterization and cellular distribution of human spermatozoal heat shock proteins. Hum Reprod 7:637–645

    PubMed  CAS  Google Scholar 

  • Mirazimi A, Svensson L (2000) ATP is required for correct folding and disulfide bond formation of rotavirus VP7. J Virol 74:8048–8052

    Article  PubMed  CAS  Google Scholar 

  • Misselwitz B, Staeck O, Rapoport TA (1998) J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol Cell 2:593–603

    Article  PubMed  CAS  Google Scholar 

  • Moehler M, Zeidler M, Schede J, Rommelaere J, Galle PR, Cornelis JJ, Heike M (2003) Oncolytic parvovirus H1 induces release of heat-shock protein HSP72 in susceptible human tumor cells but may not affect primary immune cells. Cancer Gene Ther 10:477–480

    Article  PubMed  CAS  Google Scholar 

  • Mokranjac D, Sichting M, Neupert W, Hell K (2003) Tim14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria. EMBO J 22:4945–4956

    Article  PubMed  CAS  Google Scholar 

  • Moore M, Schaack J, Baim SB, Morimoto RI, Shenk T (1987) Induced heat shock mRNAs escape the nucleocytoplasmic transport block in adenovirus-infected HeLa cells. Mol Cell Biol 7:4505–4512

    PubMed  CAS  Google Scholar 

  • Moratilla M, Agromayor M, Nunez A, Funes JM, Varas AJ, Lopez-Estebaranz JL, Esteban M, Martin-Gallardo A (1997) A random DNA sequencing, computer-based approach for the generation of a gene map of molluscum contagiosum virus. Virus Genes 14:73–80

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI (1999) Inducible transcriptional regulation of heat shock genes: the stress signal and the unfolded protein response. In: Bukau B (ed) Molecular chaperones and folding catalysts. Regulation, cellular function and mechanism. Harwood Academic Publishers, Amsterdam, pp 35–52

    Google Scholar 

  • Morimoto RI, Tissieres A, Georgopoulos C, eds. (1994) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B (1997) Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17:5317–5327

    PubMed  CAS  Google Scholar 

  • Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B (2000) The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20:7146–7159

    Article  PubMed  CAS  Google Scholar 

  • Multhoff G, Botzler C, Issels R (1998) The Role of Heat Shock Proteins in the Stimulation of an Immune Response. Biol Chem 379:295–300

    PubMed  CAS  Google Scholar 

  • Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1:167–176

    Article  PubMed  CAS  Google Scholar 

  • Mulvey M, Brown DT (1995) Involvement of the molecular chaperone BiP in maturation of Sindbis virus envelope glycoproteins. J Virol 69:1621–1627

    PubMed  CAS  Google Scholar 

  • Muthumani K, Hwang DS, Desai BM, Zhang D, Dayes N, Green DR, Weiner DB (2002a) HIV-1 Vpr induces apoptosis through caspase 9 in T cells and peripheral blood mononuclear cells. J Biol Chem 277:37820–37831

    Article  PubMed  CAS  Google Scholar 

  • Muthumani K, Zhang D, Hwang DS, Kudchodkar S, Dayes NS, Desai BM, Malik AS, Yang JS, Chattergoon MA, Maguire HC, Jr., Weiner DB (2002b) Adenovirus encoding HIV-1 Vpr activates caspase 9 and induces apoptotic cell death in both p53 positive and negative human tumor cell lines. Oncogene 21:4613–4625

    Article  PubMed  CAS  Google Scholar 

  • Napuli AJ, Alzhanova DV, Doneanu CE, Barofsky DF, Koonin EV, Dolja VV (2003) The 64-kilodalton capsid protein homolog of Beet yellows virus is required for assembly of virion tails. J Virol 77:2377–2384

    Article  PubMed  CAS  Google Scholar 

  • Napuli AJ, Falk BW, Dolja VV (2000) Interaction between HSP70 homolog and filamentous virions of the Beet yellows virus. Virology 274:232–239

    Article  PubMed  CAS  Google Scholar 

  • Neupert W, Brunner M (2002) The protein import motor of mitochondria. Nat Rev Mol Cell Biol 3:555–565

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR (1982) Induction of the synthesis of a 70,000 dalton mammalian heat shock protein by the adenovirus E1A gene product. Cell 29:913–919

    Article  PubMed  CAS  Google Scholar 

  • Newmyer SL, Christensen A, Sever S (2003) Auxilin-dynamin interactions link the uncoating ATPase chaperone machinery with vesicle formation. Dev Cell 4:929–940

    Article  PubMed  CAS  Google Scholar 

  • Newmyer SL, Schmid SL (2001) Dominant-interfering Hsc70 mutants disrupt multiple stages of the clathrin-coated vesicle cycle in vivo. J Cell Biol 152:607–620

    Article  PubMed  CAS  Google Scholar 

  • Ng DT, Randall RE, Lamb RA (1989) Intracellular maturation and transport of the SV5 type II glycoprotein hemagglutinin-neuraminidase: specific and transient association with GRP78-BiP in the endoplasmic reticulum and extensive internalization from the cell surface. J Cell Biol 109:3273–3289

    Article  PubMed  CAS  Google Scholar 

  • Nicchitta CV (2000) Role of chaperones in antigen processing. Immunol Invest 29:101–104

    Article  PubMed  CAS  Google Scholar 

  • Niewiarowska J, D’Halluin JC, Belin MT (1992) Adenovirus capsid proteins interact with HSP70 proteins after penetration in human or rodent cells. Exp Cell Res 201:408–416

    Article  PubMed  CAS  Google Scholar 

  • Niyaz Y, Frenz I, Petersen G, Gehring U (2003) Transcriptional stimulation by the DNA binding protein Hap46/BAG-1M involves hsp70/hsc70 molecular chaperones. Nucl Acids Res 31:2209–2216

    Article  PubMed  CAS  Google Scholar 

  • Niyaz Y, Zeiner M, Gehring U (2001) Transcriptional activation by the human Hsp70-associating protein Hap50. J Cell Sci 114:1839–1845

    PubMed  CAS  Google Scholar 

  • Nollen EAA, Brunsting JF, Song J, Kampinga HH, Morimoto RI (2000) Bag1 functions in vivo as a negative regulator of Hsp70 chaperone activity. Mol Cell Biol 20:1083–1088

    Article  PubMed  CAS  Google Scholar 

  • Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jaattela M (2000) Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci USA 97:7871–7876

    Article  PubMed  CAS  Google Scholar 

  • O’Keeffe B, Fong Y, Chen D, Zhou S, Zhou Q (2000) Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription. J Biol Chem 275:279–287

    Article  PubMed  CAS  Google Scholar 

  • Oglesbee M, Krakowka S (1993) Cellular stress response induces selective intranuclear trafficking and accumulation of morbillivirus major core protein. Lab Invest 68:109–117

    PubMed  CAS  Google Scholar 

  • Oglesbee M, Ringler S, Krakowka S (1990) Interaction of canine distemper virus nucleocapsid variants with 70 K heat-shock proteins. J Gen Virol 71:1585–1590

    Article  PubMed  CAS  Google Scholar 

  • Oglesbee MJ, Liu Z, Kenney H, Brooks CL (1996) The highly inducible member of the 70 kDa family of heat shock proteins increases canine distemper virus polymerase activity. J Gen Virol 77:2125–2135

    Article  PubMed  CAS  Google Scholar 

  • Ohgitani E, Kobayashi K, Takeshita K, Imanishi J (1998) Induced expression and localization to nuclear-inclusion bodies of hsp70 in varicella-zoster virus-infected human diploid fibroblasts. Microbiol Immunol 42:755–760

    PubMed  CAS  Google Scholar 

  • Ohgitani E, Kobayashi K, Takeshita K, Imanishi J (1999) Biphasic translocation of a 70 kDa heat shock protein in human cytomegalovirus-infected cells. J Gen Virol 80:63–68

    PubMed  CAS  Google Scholar 

  • Otteken A, Earl PL, Moss B (1996) Folding, assembly, and intracellular trafficking of the human immunodeficiency virus type 1 envelope glycoprotein analyzed with monoclonal antibodies recognizing maturational intermediates. J Virol 70:3407–3415

    PubMed  CAS  Google Scholar 

  • Packschies L, Theyssen H, Buchberger A, Bukau B, Goody RS, Reinstein J (1997) GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism. Biochemistry 36: 3417–3422

    Article  PubMed  CAS  Google Scholar 

  • Palleros DR, Reid KL, Shi L, Welch WJ, Fink AL (1993) ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature 365:664–666

    Article  PubMed  CAS  Google Scholar 

  • Panjwani N, Akbari O, Garcia S, Brazil M, Stockinger B (1999) The HSC73 molecular chaperone: involvement in MHC class II antigen presentation. J Immunol 163:1936–1942

    PubMed  CAS  Google Scholar 

  • Parks GD, Lamb RA (1990) Defective assembly and intracellular transport of mutant paramyxovirus hemagglutinin-neuraminidase proteins containing altered cytoplasmic domains. J Virol 64:3605–3616

    PubMed  CAS  Google Scholar 

  • Patrick DR, Oliff A, Heimbrook DC (1994) Identification of a novel retinoblastoma gene product binding site on human papillomavirus type 16 E7 protein. J Biol Chem 269:6842–6850

    PubMed  CAS  Google Scholar 

  • Paulsson K, Wang P (2003) Chaperones and folding of MHC class I molecules in the endoplasmic reticulum. Biochim Biophys Acta 1641:1–12

    Article  PubMed  CAS  Google Scholar 

  • Pearl LH, Prodromou C (2002) Structure, function, and mechanism of the Hsp90 molecular chaperone. Adv Protein Chem 59:157–186

    Article  CAS  Google Scholar 

  • Peluso RW, Lamb RA, Choppin PW (1978) Infection with paramyxoviruses stimulates synthesis of cellular polypeptides that are also stimulated in cells transformed by Rous sarcoma virus or deprived of glucose. Proc Natl Acad Sci USA 75:6120–6124

    Article  PubMed  CAS  Google Scholar 

  • Peremyslov VV, Dolja VV (2002) Identification of the subgenomic mRNAs that encode 6-kDa movement protein and Hsp70 homolog of Beet yellows virus. Virology 295:299–306

    Article  PubMed  CAS  Google Scholar 

  • Peremyslov VV, Hagiwara Y, Dolja VV (1999) HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc Natl Acad Sci USA 96:14771–14776

    Article  PubMed  CAS  Google Scholar 

  • Phillips B, Abravaya K, Morimoto RI (1991) Analysis of the specificity and mechanism of transcriptional activation of the human hsp70 gene during infection by DNA viruses. J Virol 65:5680–5692

    PubMed  CAS  Google Scholar 

  • Phillips B, Morimoto RI (1991) Transcriptional regulation of human hsp70 genes: relationship between cell growth, differentiation, virus infection, and the stress response. Results Probl Cell Differ 17:167–187

    PubMed  CAS  Google Scholar 

  • Pierce SK (1994) Molecular chaperones in the processing and presentation of antigen to helper T cells. Experientia 50:1026–1030

    Article  PubMed  CAS  Google Scholar 

  • Pierpaoli EV, Sandmeier E, Baici A, Schö-nfeld H-J, Gisler S, Christen P (1997) The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system. J Mol Biol 269:757–768

    Article  PubMed  CAS  Google Scholar 

  • Pollack JR, Ganem D (1994) Site-specific RNA binding by a hepatitis B virus reverse transcriptase initiates two distinct reactions: RNA packaging and DNA synthesis. J Virol 68:5579–5587

    PubMed  CAS  Google Scholar 

  • Prange R, Werr M, Löffler-Mary H (1999) Chaperones involved in hepatitis B virus morphogenesis. Biol Chem 380:305–314

    Article  PubMed  CAS  Google Scholar 

  • Prapapanich V, Chen S, Nair S, Rimerman R, Smith D (1996) Molecular cloning of human p48, a transient component of progesterone receptor complexes and an Hsp70-binding protein. Mol Endocrinol. 10:420–431

    Article  PubMed  CAS  Google Scholar 

  • Pratt WB (1997) The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol 37:297–326

    Article  PubMed  CAS  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–33

    CAS  Google Scholar 

  • Prokhnevsky AI, Peremyslov VV, Napuli AJ, Dolja VV (2002) Interaction between long-distance transport factor and Hsp70-related movement protein of Beet yellows virus. J Virol 76:11003–11011

    Article  PubMed  CAS  Google Scholar 

  • Qian YQ, Patel D, Hartl FU, McColl DJ (1996) Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J-domain. J Mol Biol 260:224–235

    Article  PubMed  CAS  Google Scholar 

  • Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417: 618–624

    Article  PubMed  CAS  Google Scholar 

  • Rapoport TA, Jungnickel B, Kutay U (1996) Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu Rev Biochem 65:271–303

    Article  PubMed  CAS  Google Scholar 

  • Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jaattela M, Penninger JM, Garrido C, Kroemer G (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839–843

    Article  PubMed  CAS  Google Scholar 

  • Richter K, Buchner J (2001) Hsp90: chaperoning signal transduction. J Cell Physiol 188:281–290

    Article  PubMed  CAS  Google Scholar 

  • Rivas C, Gil J, Melkova Z, Esteban M, Diaz-Guerra M (1998) Vaccinia virus E3L protein is an inhibitor of the interferon (IFN)-induced 2–5A synthetase enzyme. Virology 243:406–414

    Article  PubMed  CAS  Google Scholar 

  • Roberts JD, McMacken R (1983) The bacteriophage lambda O replication protein: isolation and characterization of the amplified initiator. Nucl Acids Res 11:7435–7452

    Article  PubMed  CAS  Google Scholar 

  • Rocchi G, Pavesi A, Ferrari C, Bolchi A, Manara GC (1993) A new insight into the suggestion of a possible antigenic role of a member of the 70 kD heat shock proteins. Cell Biol Int 17:83–92

    Article  PubMed  CAS  Google Scholar 

  • Roth S, Willcox N, Rzepka R, Mayer MP, Melchers I (2002) Major differences in antigen-processing correlate with a single Arg71<->Lys substitution in HLA-DR molecules predisposing to rheumatoid arthritis and with their selective interactions with 70-kDa heat shock protein chaperones. J Immunol 169:3015–3020

    PubMed  CAS  Google Scholar 

  • Roulston A, Marcellus RC, Branton PE (1999) Viruses and apoptosis. Annu Rev Microbiol 53:577–628

    Article  PubMed  CAS  Google Scholar 

  • Roux L (1990) Selective and transient association of Sendai virus HN glycoprotein with BiP. Virology 175: 161–166

    Article  PubMed  CAS  Google Scholar 

  • Rüdiger S, Germeroth L, Schneider-Mergener J, Bukau B (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16:1501–1507

    Article  PubMed  Google Scholar 

  • Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    Article  PubMed  CAS  Google Scholar 

  • Ryan MT, Pfanner N (2002) Hsp70 proteins in protein translocation. Adv Protein Chem 59:223–242

    Article  CAS  Google Scholar 

  • Sagara J, Kawai A (1992) Identification of heat shock protein 70 in the rabies virion. Virology 190: 845–848

    Article  PubMed  CAS  Google Scholar 

  • Sagara Y, Ishida C, Inoue Y, Shiraki H, Maeda Y (1998) 71-kilodalton heat shock cognate protein acts as a cellular receptor for syncytium formation induced by human T-cell lymphotropic virus type 1. J Virol 72:535–541

    PubMed  CAS  Google Scholar 

  • Sainis I, Angelidis C, Pagoulatos G, Lazaridis I (1994) The hsc70 gene which is slightly induced by heat is the main virus inducible member of the hsp70 gene family. FEBS Lett 355:282–286

    Article  PubMed  CAS  Google Scholar 

  • Saito H, Uchida H (1977) Initiation of the DNA replication of bacteriophage lambda in Escherichia coli K12. J Mol Biol 113:1–25

    Article  PubMed  CAS  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nature Cell Biol 2:476–483

    Article  PubMed  CAS  Google Scholar 

  • Santomenna LD, Colberg-Poley AM (1990) Induction of cellular hsp70 expression by human cytomegalovirus. J Virol 64:2033–2040

    PubMed  CAS  Google Scholar 

  • Saphire AC, Guan T, Schirmer EC, Nemerow GR, Gerace L (2000) Nuclear import of adenovirus DNA in vitro involves the nuclear protein import pathway and hsc70. J Biol Chem 275:4298–4304

    Article  PubMed  CAS  Google Scholar 

  • Satyanarayana T, Gowda S, Ayllon MA, Dawson WO (2004) Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. Proc Natl Acad Sci USA 101:799–804

    Article  PubMed  CAS  Google Scholar 

  • Satyanarayana T, Gowda S, Mawassi M, Albiach-Marti MR, Ayllon MA, Robertson C, Garnsey SM, Dawson WO (2000) Closterovirus encoded HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly. Virology 278:253–265

    Article  PubMed  CAS  Google Scholar 

  • Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Struture of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210

    Article  PubMed  CAS  Google Scholar 

  • Schilling B, De-Medina T, Syken J, Vidal M, Münger K (1998) A novel human DnaJ protein, hTid-1, a homolog of the Drosophila tumor suppressor protein Tid56, can interact with the human papillomavirus type 16 E7 oncoprotein. Virology 247:74–85

    Article  PubMed  CAS  Google Scholar 

  • Schirmbeck R, Kwissa M, Fissolo N, Elkholy S, Riedl P, Reimann J (2002) Priming polyvalent immunity by DNA vaccines expressing chimeric antigens with a stress protein-capturing, viral J-domain. FASEB J 16:1108–1110

    PubMed  CAS  Google Scholar 

  • Schlieker C, Bukau B, Mogk A (2002) Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. J Biotechnol 96:13–21

    Article  PubMed  CAS  Google Scholar 

  • Schmid D, Baici A, Gehring H, Christen P (1994) Kinetics of molecular chaperone action. Science 263: 971–973

    Article  PubMed  CAS  Google Scholar 

  • Schneikert J, Hubner S, Martin E, Cato AC (1999) A nuclear action of the eukaryotic cochaperone RAP46 in downregulation of glucocorticoid receptor activity. J Cell Biol 146:929–940

    Article  PubMed  CAS  Google Scholar 

  • Schultz-Cherry S, Dybdahl-Sissoko N, Neumann G, Kawaoka Y, Hinshaw VS (2001) Influenza virus ns1 protein induces apoptosis in cultured cells. J Virol 75:7875–7881

    Article  PubMed  CAS  Google Scholar 

  • Sedger L, Ramshaw I, Condie A, Medveczky J, Braithwaite A, Ruby J (1996) Vaccinia virus replication is independent of cellular HSP72 expression which is induced during virus infection. Virology 225:423–427

    Article  PubMed  CAS  Google Scholar 

  • Sedger L, Ruby J (1994) Heat shock response to vaccinia virus infection. J Virol 68:4685–4689

    PubMed  CAS  Google Scholar 

  • Sharma S, Sathyanarayana BK, Bird JG, Hoskins JR, Lee B, Wickner S (2004) Plasmid P1 RepA is homologous to the F plasmid RepE class of initiators. J Biol Chem 279:6027–6034

    Article  PubMed  CAS  Google Scholar 

  • Sheng Q, Denis D, Ratnofsky M, DeCaprio JA, Schaffhausen B (1997) The DnaJ domain of polyomavirus large T antigen is required to regulate RB family tumor suppressor function. J Virol 71:9410–9416

    PubMed  CAS  Google Scholar 

  • Sheng Q, Love TM, Schaffhausen B (2000) J domain-independent regulation of the Rb family by polyomavirus large T antigen. J Virol 74:5280–5290

    Article  PubMed  CAS  Google Scholar 

  • Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH, Zhao R, Puravs E, Tra J, Michael CW, Misek DE, Hanash SM (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616

    Article  PubMed  CAS  Google Scholar 

  • Shtilerman M, Lorimer GH, Englander SW (1999) Chaperonin function: folding by forced unfolding. Science 284:822–825

    Article  PubMed  CAS  Google Scholar 

  • Simon MC, Fisch TM, Benecke BJ, Nevins JR, Heintz N (1988) Definition of Multiple, Functionally Distinct TATA Elements, one of which is a target in the hsp70 promoter for E1A Regulation. Cell 52:723–729

    Article  PubMed  CAS  Google Scholar 

  • Simon MC, Kitchener K, Kao HT, Hickey E, Weber L, Voellmy R, Heintz N, Nevins JR (1987) Selective induction of human heat shock gene transcription by the adenovirus E1A gene products, including the 12S E1A product. Mol Cell Biol 7:2884–2890

    PubMed  CAS  Google Scholar 

  • Singh I, Doms RW, Wagner KR, Helenius A (1990) Intracellular transport of soluble and membrane-bound glycoproteins: folding, assembly and secretion of anchor-free influenza hemagglutinin. EMBO J 9:631–639

    PubMed  CAS  Google Scholar 

  • Slepenkov SV, Witt SN (2002) The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase? Mol Microbiol 45:1197–1206

    Article  PubMed  CAS  Google Scholar 

  • Smith DF (2000) Chaperones in progesterone receptor complexes. Semin. Cell Dev Biol 11:45–52

    Article  PubMed  Google Scholar 

  • Smith DF, Sullivan WP, Marion TN, Zaitsu K, Madden B, McCormick DJ, Toft DO (1993) Identification of a 60-Kilodalton Stress-Related Protein, p60, which interacts with hsp90 and hsp70. Mol Cell Biol 13:869–876

    PubMed  CAS  Google Scholar 

  • Soellick T, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH (2000) The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci USA 97:2373–2378

    Article  PubMed  CAS  Google Scholar 

  • Sollars V, Lu X, Xiao L, Wang X, Garfinkel MD, Ruden DM (2003) Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet 33:70–74

    Article  PubMed  CAS  Google Scholar 

  • Sondermann H, Becker T, Mayhew M, Wieland F, Hartl FU (2000) Characterization of a receptor for heat shock protein 70 on macrophages and monocytes. Biol Chem 381:1165–1174

    Article  PubMed  CAS  Google Scholar 

  • Sondermann H, Scheufler C, Scheider C, Höhfeld J, Hartl F-U, Moarefi I (2001) Structure of a Bag/Hsc70 Complex: Convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291:1553–1557

    Article  PubMed  CAS  Google Scholar 

  • Sousa MC, McKay DB (1998) The hydroxyl of threonine 13 of the bovine 70-kDa heat shock cognate protein is essential for transducing the ATP-induced conformational change. Biochemistry 37:15392–15399

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan A, McClellan AJ, Vartikar J, Marks I, Cantalupo P, Li Y, Whyte P, Rundell K, Brodsky JL, Pipas JM (1997) The amino-terminal transforming region of simian virus 40 large T and small t antigens functions as a J domain. Mol Cell Biol 17:4761–4773

    PubMed  CAS  Google Scholar 

  • Stoeckle MY, Sugano S, Hampe A, Vashistha A, Pellman D, Hanafusa H (1988) 78-kilodalton glucose-regulated protein is induced in Rous sarcoma virus-transformed cells independently of glucose deprivation. Mol Cell Biol 8: 2675–2680

    PubMed  CAS  Google Scholar 

  • Stubdal H, Zalvide J, Campbell KS, Schweitzer C, Roberts TM, DeCaprio JA (1997) Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of simian virus 40 large T antigen. Mol Cell Biol 17: 4979–4990

    PubMed  CAS  Google Scholar 

  • Sugawara S, Takeda K, Lee A, Dennert G (1993) Suppression of stress protein GRP78 induction in tumor B/C10ME eliminates resistance to cell mediated cytotoxicity. Cancer Res 53:6001–6005

    PubMed  CAS  Google Scholar 

  • Sullivan CS, Cantalupo P, Pipas JM (2000a) The molecular chaperone activity of simian virus 40 large T antigen is required to disrupt Rb-E2F family complexes by an ATP-dependent mechanism. Mol Cell Biol 20:6233–6243

    Article  PubMed  CAS  Google Scholar 

  • Sullivan CS, Gilbert SP, Pipas JM (2001) ATP-dependent simian virus 40 T-antigen-Hsc70 complex formation. J Virol 75:1601–1610

    Article  PubMed  CAS  Google Scholar 

  • Sullivan CS, Pipas JM (2002) T antigens of simian virus 40: molecular chaperones for viral replication and tumorigenesis. Microbiol Mol Biol Rev 66:179–202

    Article  PubMed  CAS  Google Scholar 

  • Sullivan CS, Tremblay JD, Fewell SW, Lewis JA, Brodsky JL, Pipas JM (2000b) Species-specific elements in the large T-antigen J domain are required for cellular transformation and DNA replication by simian virus 40. Mol Cell Biol 20:5749–5757

    Article  PubMed  CAS  Google Scholar 

  • Sunshine M, Feiss M, Stuart J, Yochem Y (1977) A new host gene (groPC) is necessary for lambda DNA replication. Mol Gen Genet 151:27–34

    Article  PubMed  CAS  Google Scholar 

  • Suzue K, Zhou X, Eisen HN, Young RA (1997) Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc Natl Acad Sci USA 94:13146–13151

    Article  PubMed  CAS  Google Scholar 

  • Swack JA, Pal SK, Mason RJ, Abeles AL, Chattoraj DK (1987) P1 plasmid replication: measurement of initiator protein concentration in vivo. J Bacteriol 169:3737–3742

    PubMed  CAS  Google Scholar 

  • Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T (1994) p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78:703–711

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Sasaki R, Takahashi J, Takayama S, Reed JC, Andoh T (2001) BAG-1 M, an isoform of Bcl-2-interacting protein BAG-1, enhances gene expression driven by CMV promoter. Biochem Biophys Res Commun 286:807–814

    Article  PubMed  CAS  Google Scholar 

  • Takayama S, Bimston DN, Matsuzawa S-i, Freeman BC, Aime-Sempe C, Xie Z, Morimoto RI, Reed JC (1997) BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J 16:4887–4896

    Article  PubMed  CAS  Google Scholar 

  • Takayama S, Reed JC (2001) Molecular chaperone targeting and regulation by BAG family proteins. Nat Cell Biol 3:E237–E241

    Article  PubMed  CAS  Google Scholar 

  • Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Millan JA, Reed JC (1995) Cloning and Functional Analysis of BAG-1: A Novel Bcl-2-Binding Protein with Anti-Cell Death Activity. Cell 80:279–284

    Article  PubMed  CAS  Google Scholar 

  • Takayama S, Xie Z, Reed JC (1999) An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem 274:781–786

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, McKay DB (1996) Kinetics of peptide binding to the bovine 70 kDa heat shock cognate protein, a molecular chaperone. Biochemistry 35:4636–4644

    Article  PubMed  CAS  Google Scholar 

  • Tang NM, Ho CY, Katze MG (1996) The 58-kDa cellular inhibitor of the double stranded RNA-dependent protein kinase requires the tetratricopeptide repeat 6 and DnaJ motifs to stimulate protein synthesis in vivo. J Biol Chem 271:28660–28666

    Article  PubMed  CAS  Google Scholar 

  • Tanguy Le Gac N, Boehmer PE (2002) Activation of the herpes simplex virus type-1 origin-binding protein (UL9) by heat shock proteins. J Biol Chem 277:5660–5666

    Article  PubMed  CAS  Google Scholar 

  • Tavis JE, Perri S, Ganem D (1994) Hepadnavirus reverse transcription initiates within the stem-loop of the RNA packaging signal and employs a novel strand transfer. J Virol 68:3536–3543

    PubMed  CAS  Google Scholar 

  • Theodorakis NG, Morimoto RI (1987) Posttranscriptional regulation of hsp70 expression in human cells: effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability. Mol Cell Biol 7:4357–4368

    PubMed  CAS  Google Scholar 

  • Theyssen H, Schuster H-P, Bukau B, Reinstein J (1996) The second step of ATP binding to DnaK induces peptide release. J Mol Biol 263:657–670

    Article  PubMed  CAS  Google Scholar 

  • Tilly K, Spence J, Georgopoulos C (1989) Modulation of stability of the Escherichia coli heat shock regulatory factor σ32. J Bacteriol 171:1585–1589

    PubMed  CAS  Google Scholar 

  • Tilly K, Yarmolinsky M (1989) Participation of Escherichia coli heat shock proteins DnaJ, DnaK, and GrpE in P1 plasmid replication. J Bacteriol 171:6025–6029

    PubMed  CAS  Google Scholar 

  • Tomita Y, Yamashita T, Sato H, Taira H (1999) Kinetics of interactions of sendai virus envelope glycoproteins, F and HN, with endoplasmic reticulum-resident molecular chaperones, BiP, calnexin, and calreticulin. J Biochem (Tokyo) 126:1090–1100

    CAS  Google Scholar 

  • Triantafilou K, Fradelizi D, Wilson K, Triantafilou M (2002) GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J Virol 76: 633–643

    Article  PubMed  CAS  Google Scholar 

  • Truscott KN, Voos W, Frazier AE, Lind M, Li Y, Geissler A, Dudek J, Müller H, Sickmann A, Meyer HE, Meisinger C, Guiard B, Rehling P, Pfanner N (2003) A J-protein is an essential subunit of the presequence translocase-associated protein import motor of mitochondria. J Cell Biol 163:707–713

    Article  PubMed  CAS  Google Scholar 

  • Ungewickell E (1985) The 70-kd mammalian heat shock proteins are structurally and functionally related to the uncoating protein that releases clathrin triskelia from coated vesicles. EMBO J 4:3385–3391

    PubMed  CAS  Google Scholar 

  • Urano F, Bertolotti A, Ron D (2000) IRE1 and efferent signaling from the endoplasmic reticulum. J Cell Sci 113:3697–3702

    PubMed  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    Article  PubMed  CAS  Google Scholar 

  • VanBuskirk A, Crump BL, Margoliash E, Pierce SK (1989) A peptide binding protein having a role in antigen presentation is a member of the HSP70 heat shock family. J Exp Med 170:1799–1809

    Article  PubMed  CAS  Google Scholar 

  • VanBuskirk AM, DeNagel DC, Guagliardi LE, Brodsky FM, Pierce SK (1991) Cellular and subcellular distribution of PBP72/74, a peptide-binding protein that plays a role in antigen processing. J Immunol 146:500–556

    PubMed  CAS  Google Scholar 

  • Velten M, Villoutreix BO, Ladjimi MM (2000) Quaternary structure of HSC70 cochaperone HIP. Biochemistry 39:307–315

    Article  PubMed  CAS  Google Scholar 

  • Wainberg Z, Oliveira M, Lerner S, Tao Y, Brenner BG (1997) Modulation of stress protein (hsp27 and hsp70) expression in CD4+ lymphocytic cells following acute infection with human immunodeficiency virus type-1. Virology 233:364–373

    Article  PubMed  CAS  Google Scholar 

  • Wang GH, Seeger C (1992) The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis. Cell 71:663–670

    Article  PubMed  CAS  Google Scholar 

  • Wang GH, Seeger C (1993) Novel mechanism for reverse transcription in hepatitis B viruses. J Virol 67: 6507–6512

    PubMed  CAS  Google Scholar 

  • Wang H-G, Takayam S, Rapp UR, Reed JC (1996) Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc Natl Acad Sci USA 93:7063–7068

    Article  PubMed  CAS  Google Scholar 

  • Watowich SS, Morimoto RI, Lamb RA (1991) Flux of the paramyxovirus hemagglutinin-neuraminidase glycoprotein through the endoplasmic reticulum activates transcription of the GRP78-BiP gene. J Virol 65:3590–3597

    PubMed  CAS  Google Scholar 

  • Weber-Ban EU, Reid BG, Miranker AD, Horwich AL (1999) Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401:90–93

    Article  PubMed  CAS  Google Scholar 

  • Weisshart K, Bradley MK, Weiner BM, Schneider C, Moarefi I, Fanning E, Arthur AK (1996) An N-terminal deletion mutant of simian virus 40 (SV40) large T antigen oligomerizes incorrectly on SV40 DNA but retains the ability to bind to DNA polymerase alpha and replicate SV40 DNA in vitro. J Virol 70:3509–3516

    PubMed  CAS  Google Scholar 

  • White E, Spector D, Welch W (1988) Differential distribution of the adenovirus E1A proteins and colocalization of E1A with the 70-kilodalton cellular heat shock protein in infected cells. J Virol 62:4153–4166

    PubMed  CAS  Google Scholar 

  • Wickner S, Hoskins J, McKenney K (1991a) Function of DnaJ and DnaK as chaperones in origin-specific DNA binding by RepA. Nature 350:165–167

    Article  PubMed  CAS  Google Scholar 

  • Wickner S, Hoskins J, McKenney K (1991b) Monomerization of RepA dimers by heat shock proteins activates binding to DNA replication origin. Proc Natl Acad Sci USA 88:7903–7907

    Article  PubMed  CAS  Google Scholar 

  • Wickner S, Skowyra D, Hoskins J, McKenney K (1992) DnaJ, DnaK, and GrpE heat shock proteins are required in oriP1 DNA replication solely at the RepA monomerization step. Proc Natl Acad Sci USA 89:10345–10349

    Article  PubMed  CAS  Google Scholar 

  • Wickner SH (1990) Three Escherichia coli heat shock proteins are required for P1 plasmid DNA replication: formation of an active complex between E. coli DnaJ protein and the P1 initiator protein. Proc Natl Acad Sci USA 87:2690–2694

    Article  PubMed  CAS  Google Scholar 

  • Williams GT, McClanahan TK, Morimoto RI (1989) E1a transactivation of the human HSP70 promoter is mediated through the basal transcriptional complex. Mol Cell Biol 9:2574–2587

    PubMed  CAS  Google Scholar 

  • Wittung-Stafshede P, Guidry J, Horne BE, Landry SJ (2003) The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70. Biochemistry 42:4937–4944

    Article  PubMed  CAS  Google Scholar 

  • Wu BJ, Hurst HC, Jones NC, Morimoto RI (1986) The E1A 13S product of adenovirus 5 activates transcription of the cellular human HSP70 gene. Mol Cell Biol 6:2994–2999

    PubMed  CAS  Google Scholar 

  • Wu EW, Clemens KE, Heck DV, Munger K (1993) The human papillomavirus E7 oncoprotein and the cellular transcription factor E2F bind to separate sites on the retinoblastoma tumor suppressor protein. J Virol 67:2402–2407

    PubMed  CAS  Google Scholar 

  • Wyman C, Vasilikiotis C, Ang D, Georgopoulos C, Echols H (1993) Function of the GrpE heat shock protein in bidirectional unwinding and replication from the origin of phage lambda. J Biol Chem 268:25192–25196

    PubMed  CAS  Google Scholar 

  • Xu A, Bellamy AR, Taylor JA (1998) BiP (GRP78) and endoplasmin (GRP94) are induced following rotavirus infection and bind transiently to an endoplasmic reticulum-localized virion component. J Virol 72:9865–9872

    PubMed  CAS  Google Scholar 

  • Yaglom JA, Gabai VL, Meriin AB, Mosser DD, Sherman MY (1999) The function of HSP72 in suppression of c-Jun N-terminal kinase activation can be dissociated from its role in prevention of protein damage. J Biol Chem 274: 20223–20228

    Article  PubMed  CAS  Google Scholar 

  • Yan W, Gale MJ, Jr, Tan SL, Katze MG (2002) Inactivation of the PKR protein kinase and stimulation of mRNA translation by the cellular co-chaperone P58(IPK) does not require J domain function. Biochemistry 41: 4938–4945

    Article  PubMed  CAS  Google Scholar 

  • Yang J, DeFranco DB (1994) Differential roles of heat shock protein 70 in the in vitro nuclear import of glucocorticoid receptor and simian virus 40 large tumor antigen. Mol Cell Biol 14:5088–5098

    PubMed  CAS  Google Scholar 

  • Yang UC, Huang W, Flint SJ (1996) mRNA export correlates with activation of transcription in human subgroup C adenovirus-infected cells. J Virol 70:4071–4080

    PubMed  CAS  Google Scholar 

  • Yochem J, Uchida H, Sunshine M, Saito H, Georgopoulos CP, Feiss M (1978) Genetic analysis of two genes, dnaJ and dnaK, necessary for Escherichia coli and bacteriophage lambda DNA replication. Mol Gen Genet 164: 9–14

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–273

    Article  PubMed  CAS  Google Scholar 

  • Zalvide J, Stubdal H, DeCaprio JA (1998) The J domain of simian virus 40 large T antigen is required to functionally inactivate RB family proteins. Mol Cell Biol 18:1408–1415

    PubMed  CAS  Google Scholar 

  • Zarate S, Cuadras MA, Espinosa R, Romero P, Juarez KO, Camacho-Nuez M, Arias CF, Lopez S (2003) Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J Virol 77:7254–7260

    Article  PubMed  CAS  Google Scholar 

  • Zeiner M, Gebauer M, Gehring U (1997) Mammalian protein RAP46: an interaction partner and modulator of 70 kDa heat shock proteins. EMBO J. 16:5483–5490

    Article  PubMed  CAS  Google Scholar 

  • Zeiner M, Gehring U (1995) A protein that interacts with members of the nuclear hormone receptor family: Identification and cDNA cloning. Proc Natl Acad Sci USA 92:11465–11469

    Article  PubMed  CAS  Google Scholar 

  • Zeiner M, Niyaz Y, Gehring U (1999) The hsp70-associating protein Hap46 binds to DNA and stimulates transcription. Proc Natl Acad Sci USA 96:10194–10199

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Glendening C, Linke H, Parks CL, Brooks C, Udem SA, Oglesbee M (2002) Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein. J Virol 76:8737–8746

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman M, Hendrickson WA (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–1614

    Article  PubMed  CAS  Google Scholar 

  • Zylicz M, Ang D, Liberek K, Georgopoulos C (1989) Initiation of lambda DNA replication with purified host-and bacteriophage-encoded proteins: the role of the dnaK, dnaJ and grpE heat shock proteins. EMBO J 8:1601–1608

    PubMed  CAS  Google Scholar 

  • Zylicz M, Ang D, Liberek K, Yamamoto T, Georgopoulos C (1988) Initiation of lambda DNA replication reconstituted with purified lambda and Escherichia coli replication proteins. Biochim Biophys Acta 951:344–350

    PubMed  CAS  Google Scholar 

  • Zylicz M, King FW, Wawrzynow A (2001) Hsp70 interactions with the p53 tumour suppressor protein. EMBO J 20:4634–4638

    Article  PubMed  CAS  Google Scholar 

  • Zylicz M, LeBowitz JH, McMacken R, Georgopoulos C (1983) The dnaK protein of Escherichia coli possesses an ATPase and autophosphorylating activity and is essential in an in vitro DNA replication system. Proc Natl Acad Sci USA 80:6431–6435

    Article  PubMed  CAS  Google Scholar 

  • Zylicz M, Wawrzynow A, Marszalek J, Liberek K, Banecki B, Konieczny I, Blaszczak P, Jakóbkiewicz J, Gonciarz-Swiatek M, Duchniewicz M, Puzewicz J, Krzewska J (1999) Role of chaperones in replication of bacteriophage λ DNA. In: Bukau B (ed) Molecular chaperones and folding catalysts. Regulation, cellular function and mechanism. Harwood Academic Publishers, Amsterdam, pp 295–311

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Mayer .

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Mayer, M.P. (2005). Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-004-0025-5

Download citation

Publish with us

Policies and ethics