Skip to main content

Advertisement

Log in

Multi-omics analysis of multiple myeloma patients with differential response to first-line treatment

  • Research
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The genome backgrounds of multiple myeloma (MM) would affect the efficacy of specific treatment. However, the mutational and transcriptional landscapes in MM patients with differential response to first-line treatment remains unclear. We collected paired whole-exome sequencing (WES) and transcriptomic data of over 200 MM cases from MMRF-COMPASS project. R package, maftools was applied to analyze the somatic mutations and mutational signatures across MM samples. Differential expressed genes (DEG) was calculated using R package, DESeq2. The feature selection of the predictive model was determined by LASSO regression. In silico analysis revealed newly discovered recurrent mutated genes such as TTN, MUC16. TP53 mutation was observed more frequent in nonCR (complete remission) group with poor prognosis. DNA repair-associated mutational signatures were enriched in CR patients. Transcriptomic profiling showed that the activity of NF-kappa B and TGF-β pathways was suppressed in CR patients. A transcriptome-based response predictive model was constructed and showed promising predictive accuracy in MM patients receiving first-line treatment. Our study delineated distinctive mutational and transcriptional landscapes in MM patients with differential response to first-line treatment. Furthermore, we constructed a 20-gene predictive model which showed promising accuracy in predicting treatment response in newly diagnosed MM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data and material availability statement

The WES and transcriptome data used in this study could be accessed on TCGA database (https://portal.gdc.cancer.gov/projects/MMRF-COMMPASS). The maf file and expression matrix used for analysis in this study could be acquired on Mendeley website (Zheng, Bo (2023), “WES MM project”, Mendeley Data, V2, https://doi.org/10.17632/5ktn2ybd23.2).

References

  1. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60. https://doi.org/10.1056/NEJMra1011442.

    Article  CAS  PubMed  Google Scholar 

  2. Neuse CJ, Lomas OC, Schliemann C, et al. Genome instability in multiple myeloma. Leukemia. 2020;34(11):2887–97. https://doi.org/10.1038/s41375-020-0921-y.

    Article  PubMed  Google Scholar 

  3. Manier S, Salem KZ, Park J, et al. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 2017;14(2):100–13. https://doi.org/10.1038/nrclinonc.2016.122.

    Article  CAS  PubMed  Google Scholar 

  4. Lohr JG, Stojanov P, Carter SL, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25(1):91–101. https://doi.org/10.1016/j.ccr.2013.12.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tessoulin B, Moreau-Aubry A, Descamps G, et al. Whole-exon sequencing of human myeloma cell lines shows mutations related to myeloma patients at relapse with major hits in the DNA regulation and repair pathways. J Hematol Oncol. 2018;11(1):137. https://doi.org/10.1186/s13045-018-0679-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Joshua DE, Bryant C, Dix C, et al. Biology and therapy of multiple myeloma. Med J Aust. 2019;210(8):375–80. https://doi.org/10.5694/mja2.50129.

    Article  PubMed  Google Scholar 

  7. Mulligan G, Lichter DI, Di Bacco A, et al. Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to single-agent bortezomib therapy. Blood. 2014;123(5):632–9. https://doi.org/10.1182/blood-2013-05-504340.

    Article  CAS  PubMed Central  Google Scholar 

  8. Allmeroth K, Horn M, Kroef V, et al. Bortezomib resistance mutations in PSMB5 determine response to second-generation proteasome inhibitors in multiple myeloma. Leukemia. 2021;35(3):887–92. https://doi.org/10.1038/s41375-020-0989-4.

    Article  CAS  PubMed  Google Scholar 

  9. Follo MY, Pellagatti A, Armstrong RN, et al. Response of high-risk MDS to azacitidine and lenalidomide is impacted by baseline and acquired mutations in a cluster of three inositide-specific genes. Leukemia. 2019;33(9):2276–90. https://doi.org/10.1038/s41375-019-0416-x.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mallo M, Del Rey M, Ibanez M, et al. Response to lenalidomide in myelodysplastic syndromes with del(5q): influence of cytogenetics and mutations. Br J Haematol. 2013;162(1):74–86. https://doi.org/10.1111/bjh.12354.

    Article  CAS  PubMed  Google Scholar 

  11. Bensinger W. Stem-cell transplantation for multiple myeloma in the era of novel drugs. J Clin Oncol. 2008;26(3):480–92. https://doi.org/10.1200/JCO.2007.11.6863.

    Article  CAS  PubMed  Google Scholar 

  12. Attal M, Harousseau JL, Stoppa AM, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med. 1996;335(2):91–7. https://doi.org/10.1056/NEJM199607113350204.

    Article  CAS  PubMed  Google Scholar 

  13. Child JA, Morgan GJ, Davies FE, et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med. 2003;348(19):1875–83. https://doi.org/10.1056/NEJMoa022340.

    Article  CAS  PubMed  Google Scholar 

  14. White BS, Lanc I, O’Neal J, et al. A multiple myeloma-specific capture sequencing platform discovers novel translocations and frequent, risk-associated point mutations in IGLL5. Blood Cancer J. 2018;8(3):35. https://doi.org/10.1038/s41408-018-0062-y.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kunadirek P, Chuaypen N, Jenjaroenpun P, et al. Cell-free dna analysis by whole-exome sequencing for hepatocellular carcinoma: a pilot study in Thailand. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13092229

  16. Zhang L, Han X, Shi Y. Association of MUC16 mutation with response to immune checkpoint inhibitors in solid tumors. JAMA Netw Open. 2020;3(8):e2013201. https://doi.org/10.1001/jamanetworkopen.2020.13201.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kakoo A, Al-Attar M, Rasheed T. Exonic variants in multiple myeloma patients associated with relapsed/refractory and response to bortezomib regimens. Saudi J Biol Sci. 2022;29(1):610–4. https://doi.org/10.1016/j.sjbs.2021.09.017.

    Article  CAS  PubMed  Google Scholar 

  18. Moreau P, Cavo M, Sonneveld P, et al. Combination of international scoring system 3, high lactate dehydrogenase, and t(4;14) and/or del(17p) identifies patients with multiple myeloma (MM) treated with front-line autologous stem-cell transplantation at high risk of early MM progression-related death. J Clin Oncol. 2014;32(20):2173–80. https://doi.org/10.1200/JCO.2013.53.0329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Femi OF. Genetic alterations and PIK3CA gene mutations and amplifications analysis in cervical cancer by racial groups in the United States. Int J Health Sci (Qassim). 2018;12(1):28–32.

    PubMed  Google Scholar 

  20. Cai W, Zhou D, Wu W, et al. MHC class II restricted neoantigen peptides predicted by clonal mutation analysis in lung adenocarcinoma patients: implications on prognostic immunological biomarker and vaccine design. BMC Genom. 2018;19(1):582. https://doi.org/10.1186/s12864-018-4958-5.

    Article  CAS  Google Scholar 

  21. Abdul M, Ramlal S, Hoosein N. Ryanodine receptor expression correlates with tumor grade in breast cancer. Pathol Oncol Res. 2008;14(2):157–60. https://doi.org/10.1007/s12253-008-9045-9.

    Article  CAS  PubMed  Google Scholar 

  22. Colombo J, Moschetta-Pinheiro MG, Novais AA, et al. Liquid biopsy as a diagnostic and prognostic tool for women and female dogs with breast cancer. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13205233

  23. Zheng B, Sun W, Yi K, et al. Integrated transcriptomic analysis reveals a distinctive role of YAP1 in extramedullary invasion and therapeutic sensitivity of multiple myeloma. Front Oncol. 2021;11:787814. https://doi.org/10.3389/fonc.2021.787814.

    Article  CAS  PubMed  Google Scholar 

  24. Fan S, Price T, Huang W, et al. PINK1-dependent mitophagy regulates the migration and homing of multiple myeloma cells via the MOB1B-mediated hippo-YAP/TAZ pathway. Adv Sci (Weinh). 2020;7(5):1900860. https://doi.org/10.1002/advs.201900860.

    Article  CAS  PubMed  Google Scholar 

  25. Spaan I, Raymakers RA, van de Stolpe A. Wnt signaling in multiple myeloma: a central player in disease with therapeutic potential. J Hematol Oncol. 2018;11(1):67. https://doi.org/10.1186/s13045-018-0615-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tamborero D, Gonzalez-Perez A, Lopez-Bigas N. OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics. 2013;29(18):2238–44. https://doi.org/10.1093/bioinformatics/btt395.

    Article  CAS  PubMed  Google Scholar 

  27. Bustoros M, Sklavenitis-Pistofidis R, Park J, et al. Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease progression. J Clin Oncol. 2020;38(21):2380–9. https://doi.org/10.1200/JCO.20.00437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alexandrov LB, Kim J, Haradhvala NJ, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578(7793):94–101. https://doi.org/10.1038/s41586-020-1943-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang DT, Young KH, Kahl BS, et al. Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma. Mol Cancer. 2008;7:40. https://doi.org/10.1186/1476-4598-7-40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yi H, Liang L, Wang H, et al. Albendazole inhibits NF-kappaB signaling pathway to overcome tumor stemness and bortezomib resistance in multiple myeloma. Cancer Lett. 2021;520:307–20. https://doi.org/10.1016/j.canlet.2021.08.009.

    Article  CAS  PubMed  Google Scholar 

  31. Larrue C, Saland E, Boutzen H, et al. Proteasome inhibitors induce FLT3-ITD degradation through autophagy in AML cells. Blood. 2016;127(7):882–92. https://doi.org/10.1182/blood-2015-05-646497.

    Article  CAS  PubMed  Google Scholar 

  32. Frassanito MA, De Veirman K, Desantis V, et al. Halting pro-survival autophagy by TGFbeta inhibition in bone marrow fibroblasts overcomes bortezomib resistance in multiple myeloma patients. Leukemia. 2016;30(3):640–8. https://doi.org/10.1038/leu.2015.289.

    Article  CAS  PubMed  Google Scholar 

  33. Kortuem KM, Stewart AK. Carfilzomib Blood. 2013;121(6):893–7. https://doi.org/10.1182/blood-2012-10-459883.

    Article  CAS  PubMed  Google Scholar 

  34. Stewart AK, Rajkumar SV, Dimopoulos MA, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142–52. https://doi.org/10.1056/NEJMoa1411321.

    Article  CAS  PubMed  Google Scholar 

  35. Chauveau C, Rowell J, Ferreiro A. A rising titan: TTN review and mutation update. Hum Mutat. 2014;35(9):1046–59. https://doi.org/10.1002/humu.22611.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng QX, Wang J, Gu XY, et al. TTN-AS1 as a potential diagnostic and prognostic biomarker for multiple cancers. Biomed Pharmacother. 2021;135:111169. https://doi.org/10.1016/j.biopha.2020.111169.

    Article  CAS  PubMed  Google Scholar 

  37. Boota M, Schinke C, Ledoux S, et al. CA-125 secreting IgG kappa multiple myeloma. Am J Hematol. 2016;91(10):E457–8. https://doi.org/10.1002/ajh.24456.

    Article  Google Scholar 

  38. Wang ML, Huang Q, Yang TX. IgE myeloma with elevated level of serum CA125. J Zhejiang Univer Sci B. 2009;10(7):559–62. https://doi.org/10.1631/jzus.B0820399.

    Article  CAS  Google Scholar 

  39. Golan T, O’Kane GM, Denroche RE, et al. Genomic features and classification of homologous recombination deficient pancreatic ductal adenocarcinoma. Gastroenterology. 2021;160(6):2119–32. https://doi.org/10.1053/j.gastro.2021.01.220.

    Article  CAS  PubMed  Google Scholar 

  40. Song IS, Kim HK, Lee SR, et al. Mitochondrial modulation decreases the bortezomib-resistance in multiple myeloma cells. Int J Cancer. 2013;133(6):1357–67. https://doi.org/10.1002/ijc.28149.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Not applicable.

Funding

This work was supported by the Shanghai Municipal Health Commission Talent Plan Youth Project (2022YQ031), National Natural Science Foundation of China (No. 81870159), the Shanghai Pujiang Talent Program (No. 18PJD059) and the Naval Medical Center of PLA Combat Project (20M2523).

Author information

Authors and Affiliations

Authors

Contributions

B.Z. and R.L. contributed to study design. K.Y., Y.Z., T.P., J.Z., H.L., and H.X. contributed to data collection. B.Z. contributed to bioinformatic analysis and paper writing. B.Z. and R.L. contributed to funding acquisition. B.Z. and R.L. contributed to project supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Bo Zheng or Rong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

The data are all from the public database TCGA, which does not involve ethical issues.

Consent for publication

All authors approve the final manuscript and the submission to this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, B., Yi, K., Zhang, Y. et al. Multi-omics analysis of multiple myeloma patients with differential response to first-line treatment. Clin Exp Med 23, 3833–3846 (2023). https://doi.org/10.1007/s10238-023-01148-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01148-4

Keywords

Navigation