Skip to main content

Advertisement

Log in

MicroRNA expression in osteoarthritis: a meta-analysis

  • Research
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is one of the most prevalent musculoskeletal diseases globally, leading to chronic disability and poor prognosis. One of the approaches for optimizing OA treatment is to find early effective diagnostic biomarkers. The contribution of microRNAs (miRNAs) in OA progression is now being increasingly recognized. This review provides a comprehensive summary on studies reporting the expression profiling of miRNAs in OA and associated signaling pathways. We performed a systematic search of the Embase, Web of Science, PubMed, and Cochrane library databases. This systematic review is reported according to the PRISMA checklist. Studies which identified miRNAs with aberrant expression compared to controls during OA progression were included, and a meta-analysis was performed. Results from the random effects model were provided as log10 odds ratios (logORs) and 95% confidence intervals. Sensitivity analysis was conducted to confirm the accuracy of the results. Subgroup analysis was conducted based on tissue source. The target genes of miRNAs identified in this study were extracted from the MiRWalk database, and these target genes were enriched in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. A total of 191 studies reporting 162 miRNAs were included in our meta-analysis. Among them, 36 miRNAs distributed across 96 studies were expressed in the same direction in at least two studies (13 up-regulated and 23 down-regulated). Subgroup analysis of tissue source revealed that the highest number of studies was conducted using articular cartilage, where the most up-regulated miRNAs were miR-146a-5p (logOR 7.355; P < 0.001) and miR-34a-5p (logOR 6.955; P < 0.001), and the most down-regulated miRNAs were miR-127-5p (logOR 6.586; P < 0.001) and miR-140-5p (logOR 6.373; P < 0.001). Enrichment analysis of 752 downstream target genes of all identified miRNAs was performed, and the regulatory relationships among them were displayed. Mesenchymal stem cells and transforming growth factor-β were found to be the most important downstream effectors regulated by miRNA in OA. This study highlighted the importance of miRNA signaling in OA progression and identified a number of prominent miRNAs including miR-146a-5p, miR-34a-5p, miR-127-5p, and miR-140-5p which might be considered as potential biomarkers for OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The guarantor (BW) is willing to examine all requests for the full dataset after a period of two years from the date of this publication. The corresponding author should be contacted at BW. wangbin_pku@zju.edu.cn. The lead author (BW) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained. The datasets used and analyzed in this study are available upon reasonable request from the corresponding author.

Abbreviations

OA:

Osteoarthritis

MSCs:

Mesenchymal stem cells

ncRNAs:

Non-coding RNAs

circRNA:

Circular RNA

lncRNA:

Long non-coding RNA

miRNA:

MicroRNA

mRNA:

Messenger RNA

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

QUADAS-2:

Quality Assessment of Diagnostic Accuracy Studies-2

HRs:

Hazard ratios

Cis:

Confidence intervals

logOR:

Log-odds-ratio

BP:

Biological processes

CC:

Cellular component

MF:

Molecular function

MSCs:

Mesenchymal stem cells

TGF:

Transforming growth factor

VEGF:

Vascular endothelial growth factor

BMP:

Bone morphogenetic protein

MMP:

Matrix metalloproteinase

References

  1. Safari R, Jackson J, Sheffield D. Digital self-management interventions for people with osteoarthritis: systematic review with meta-analysis. J Med Internet Res. 2020;22(7):e15365. https://doi.org/10.2196/15365.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hunter DJ, Schofield D, Callander E. The individual and socioeconomic impact of osteoarthritis. Nature Rev Rheumatol. 2014;10(7):437–41. https://doi.org/10.1038/nrrheum.2014.44.

    Article  Google Scholar 

  3. Fu M, Zhou H, Li Y, Jin H, Liu X. Global, regional, and national burdens of hip osteoarthritis from 1990 to 2019: estimates from the 2019 global burden of disease study. Arthritis Res Ther. 2022;24(1):8. https://doi.org/10.1186/s13075-021-02705-6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Safiri S, Kolahi AA, Smith E, et al. Global, regional and national burden of osteoarthritis 1990–2017: a systematic analysis of the global burden of disease study 2017. Ann Rheum Dis. 2020;79(6):819–28. https://doi.org/10.1136/annrheumdis-2019-216515.

    Article  PubMed  Google Scholar 

  5. Kotlarz H, Gunnarsson CL, Fang H, Rizzo JA. Osteoarthritis and absenteeism costs: evidence from US national survey data. J Occup Environ Med. 2010;52(3):263–8. https://doi.org/10.1097/JOM.0b013e3181cf00aa.

    Article  PubMed  Google Scholar 

  6. Thysen S, Luyten FP, Lories RJ. Targets, models and challenges in osteoarthritis research. Dis Models Mech. 2015;8(1):17–30. https://doi.org/10.1242/dmm.016881.

    Article  CAS  Google Scholar 

  7. Fernandes GS, Parekh SM, Moses J, et al. Prevalence of knee pain, radiographic osteoarthritis and arthroplasty in retired professional footballers compared with men in the general population: a cross-sectional study. Br J Sports Med. 2018;52(10):678–83. https://doi.org/10.1136/bjsports-2017-097503.

    Article  PubMed  Google Scholar 

  8. Berenbaum F, Wallace IJ, Lieberman DE, Felson DT. Modern-day environmental factors in the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2018;14(11):674–81. https://doi.org/10.1038/s41584-018-0073-x.

    Article  PubMed  Google Scholar 

  9. Kong H, Sun ML, Zhang XA, Wang XQ. Crosstalk among circRNA/lncRNA, miRNA, and mRNA in osteoarthritis. Front Cell Dev Biol. 2021;9:774370. https://doi.org/10.3389/fcell.2021.774370.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li H, Yang HH, Sun ZG, Tang HB, Min JK. Whole-transcriptome sequencing of knee joint cartilage from osteoarthritis patients. Bone Joint Res. 2019;8(7):290–303. https://doi.org/10.1302/2046-3758.87.Bjr-2018-0297.R1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang W, Qi L, Chen R, et al. Circular RNAs in osteoarthritis: indispensable regulators and novel strategies in clinical implications. Arthritis Res Ther. 2021;23(1):23. https://doi.org/10.1186/s13075-021-02420-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lei M, Zheng G, Ning Q, Zheng J, Dong D. Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 2020;19(1):30. https://doi.org/10.1186/s12943-020-1135-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen C, Yin P, Hu S, Sun X, Li B. Circular RNA-9119 protects IL-1β-treated chondrocytes from apoptosis in an osteoarthritis cell model by intercepting the microRNA-26a/PTEN axis. Life Sci. 2020;256:117924. https://doi.org/10.1016/j.lfs.2020.117924.

    Article  CAS  PubMed  Google Scholar 

  14. Li L, Lv G, Wang B, Kuang L. The role of lncRNA XIST/miR-211 axis in modulating the proliferation and apoptosis of osteoarthritis chondrocytes through CXCR4 and MAPK signaling. Biochem Biophys Res Commun. 2018;503(4):2555–62. https://doi.org/10.1016/j.bbrc.2018.07.015.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu Y, Li R, Wen LM. Long non-coding RNA XIST regulates chondrogenic differentiation of synovium-derived mesenchymal stem cells from temporomandibular joint via miR-27b-3p/ADAMTS-5 axis. Cytokine. 2021;137:155352. https://doi.org/10.1016/j.cyto.2020.155352.

    Article  CAS  PubMed  Google Scholar 

  16. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5. https://doi.org/10.1038/nature02871.

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Ning Y, Zhou B, Yang L, Wang Y, Guo X. Integrated bioinformatics analysis of the osteoarthritis-associated microRNA expression signature. Mol Med Rep. 2018;17(1):1833–8. https://doi.org/10.3892/mmr.2017.8057.

    Article  CAS  PubMed  Google Scholar 

  18. Le LT, Swingler TE, Clark IM. Review: the role of microRNAs in osteoarthritis and chondrogenesis. Arthritis Rheum. 2013;65(8):1963–74. https://doi.org/10.1002/art.37990.

    Article  CAS  PubMed  Google Scholar 

  19. Le LT, Swingler TE, Crowe N, et al. The microRNA-29 family in cartilage homeostasis and osteoarthritis. J Mol Med (Berl). 2016;94(5):583–96. https://doi.org/10.1007/s00109-015-1374-z.

    Article  CAS  PubMed  Google Scholar 

  20. Ratneswaran A, Kapoor M. Osteoarthritis year in review: genetics, genomics, epigenetics. Osteoarthritis Cartil. 2021;29(2):151–60. https://doi.org/10.1016/j.joca.2020.11.003.

    Article  CAS  Google Scholar 

  21. Li Z, Chen Z, Wang X, et al. Integrated analysis of miRNAs and gene expression profiles reveals potential biomarkers for osteoarthritis. Front Genet. 2022;13:814645. https://doi.org/10.3389/fgene.2022.814645.

    Article  CAS  PubMed  Google Scholar 

  22. Torres-Berrío A, Nouel D, Cuesta S, et al. MiR-218: a molecular switch and potential biomarker of susceptibility to stress. Mol Psychiatry. 2020;25(5):951–64. https://doi.org/10.1038/s41380-019-0421-5.

    Article  PubMed  Google Scholar 

  23. Xu J, Kang Y, Liao WM, Yu L. MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5. PLoS ONE. 2012;7(3):e31861. https://doi.org/10.1371/journal.pone.0031861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Swingler TE, Wheeler G, Carmont V, et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum. 2012;64(6):1909–19. https://doi.org/10.1002/art.34314.

    Article  CAS  PubMed  Google Scholar 

  25. Park SJ, Cheon EJ, Lee MH, Kim HA. MicroRNA-127–5p regulates matrix metalloproteinase 13 expression and interleukin-1beta-induced catabolic effects in human chondrocytes. Arthritis Rheum. 2013;65(12):3141–52. https://doi.org/10.1002/art.38188.

    Article  CAS  PubMed  Google Scholar 

  26. Liu JN, Lu S, Fu CM. MiR-146a expression profiles in osteoarthritis in different tissue sources: a meta-analysis of observational studies. J Orthop Surg Res. 2022;17(1):148. https://doi.org/10.1186/s13018-022-02989-7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jones TL, Esa MS, Li KHC, et al. Osteoporosis, fracture, osteoarthritis & sarcopenia: A systematic review of circulating microRNA association. Bone. 2021;152:116068. https://doi.org/10.1016/j.bone.2021.116068.

    Article  CAS  PubMed  Google Scholar 

  28. Shorter E, Avelar R, Zachariou M, et al. Identifying novel osteoarthritis-associated genes in human cartilage using a systematic meta-analysis and a multi-source integrated network. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23084395.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Swingler TE, Niu L, Smith P, et al. The function of microRNAs in cartilage and osteoarthritis. Clin Exp Rheumatol. 2019;37(5):40–7.

    PubMed  Google Scholar 

  30. Gene Ontology C. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015; 43(Database issue):D1049-56.https://doi.org/10.1093/nar/gku1179

  31. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457–62. https://doi.org/10.1093/nar/gkv1070.

    Article  CAS  PubMed  Google Scholar 

  32. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36. https://doi.org/10.7326/0003-4819-155-8-201110180-00009.

    Article  PubMed  Google Scholar 

  33. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58. https://doi.org/10.1002/sim.1186.

    Article  PubMed  Google Scholar 

  34. Newman MC. “What exactly are you inferring?” A closer look at hypothesis testing. Environ Toxicol Chem. 2008;27(5):1013–9. https://doi.org/10.1897/07-373.1.

    Article  CAS  PubMed  Google Scholar 

  35. Higgins JPTTJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane handbook for systematic reviews of interventions version 6.3. Cochrane; 2022.

    Google Scholar 

  36. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13(10):e0206239. https://doi.org/10.1371/journal.pone.0206239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics J Integr Biol. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118.

    Article  CAS  Google Scholar 

  38. Tian F, Wang J, Zhang Z, Yang J. LncRNA SNHG7/miR-34a-5p/SYVN1 axis plays a vital role in proliferation, apoptosis and autophagy in osteoarthritis. Biol Res. 2020;53(1):9. https://doi.org/10.1186/s40659-020-00275-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song P, Ye LF, Zhang C, Peng T, Zhou XH. Long non-coding RNA XIST exerts oncogenic functions in human nasopharyngeal carcinoma by targeting miR-34a-5p. Gene. 2016;592(1):8–14. https://doi.org/10.1016/j.gene.2016.07.055.

    Article  CAS  PubMed  Google Scholar 

  40. Jia D, Niu Y, Li D, Liu Z. lncRNA C2dat1 promotes cell proliferation, migration, and invasion by targeting miR-34a-5p in osteosarcoma cells. Oncol Research. 2018;26(5):753–64. https://doi.org/10.3727/096504017x15024946480113.

    Article  Google Scholar 

  41. Endisha H, Datta P, Sharma A, et al. MicroRNA-34a-5p promotes joint destruction during osteoarthritis. Arthritis Rheumatol. 2021;73(3):426–39. https://doi.org/10.1002/art.41552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dong C, Wang X, Li N, et al. microRNA-mediated GAS1 downregulation promotes the proliferation of synovial fibroblasts by PI3K-Akt signaling in osteoarthritis. Exp Ther Med. 2019;18(6):4273–86. https://doi.org/10.3892/etm.2019.8101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Song AF, Kang L, Wang YF, Wang M. MiR-34a-5p inhibits fibroblast-like synoviocytes proliferation via XBP1. Eur Rev Med Pharmacol Sci. 2020;24(22):11675–82. https://doi.org/10.26355/eurrev_202011_23812.

    Article  PubMed  Google Scholar 

  44. Zhang H, Zheng W, Li D, Zheng J. miR-146a-5p promotes chondrocyte apoptosis and inhibits autophagy of osteoarthritis by targeting NUMB. Cartilage. 2021;13(2_suppl):1467s-s1477. https://doi.org/10.1177/19476035211023550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saito T, Fukai A, Mabuchi A, et al. Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. Nat Med. 2010;16(6):678–86. https://doi.org/10.1038/nm.2146.

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y, Shen S, Li Z, Li W, Weng X. MIR-140–5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting HMGB1 in osteoarthritis. Inflamm Res. 2020;69(1):63–73. https://doi.org/10.1007/s00011-019-01294-0.

    Article  CAS  PubMed  Google Scholar 

  47. Li C, Hu Q, Chen Z, et al. MicroRNA-140 suppresses human chondrocytes hypertrophy by targeting SMAD1 and controlling the bone morphogenetic protein pathway in osteoarthritis. Am J Med Sci. 2018;355(5):477–87. https://doi.org/10.1016/j.amjms.2018.01.004.

    Article  PubMed  Google Scholar 

  48. Karlsen TA, Jakobsen RB, Mikkelsen TS, Brinchmann JE. microRNA-140 targets RALA and regulates chondrogenic differentiation of human mesenchymal stem cells by translational enhancement of SOX9 and ACAN. Stem Cells Dev. 2014;23(3):290–304. https://doi.org/10.1089/scd.2013.0209.

    Article  CAS  PubMed  Google Scholar 

  49. Duan L, Liang Y, Xu X, Xiao Y, Wang D. Recent progress on the role of miR-140 in cartilage matrix remodelling and its implications for osteoarthritis treatment. Arthritis Res Ther. 2020;22(1):194. https://doi.org/10.1186/s13075-020-02290-0.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liang Y, Duan L, Xiong J, et al. E2 regulates MMP-13 via targeting miR-140 in IL-1β-induced extracellular matrix degradation in human chondrocytes. Arthritis Res Ther. 2016;18(1):105. https://doi.org/10.1186/s13075-016-0997-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li Z, Yuan B, Pei Z, et al. Circ_0136474 and MMP-13 suppressed cell proliferation by competitive binding to miR-127-5p in osteoarthritis. J Cell Mol Med. 2019;23(10):6554–64. https://doi.org/10.1111/jcmm.14400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tu M, Li Y, Zeng C, et al. MicroRNA-127-5p regulates osteopontin expression and osteopontin-mediated proliferation of human chondrocytes. Sci Rep. 2016;6:25032. https://doi.org/10.1038/srep25032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yan S, Wang M, Zhao J, et al. MicroRNA-34a affects chondrocyte apoptosis and proliferation by targeting the SIRT1/p53 signaling pathway during the pathogenesis of osteoarthritis. Int J Mol Med. 2016;38(1):201–9. https://doi.org/10.3892/ijmm.2016.2618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Soyocak A, Kurt H, Ozgen M, Turgut Cosan D, Colak E, Gunes HV. miRNA-146a, miRNA-155 and JNK expression levels in peripheral blood mononuclear cells according to grade of knee osteoarthritis. Gene. 2017;627:207–11. https://doi.org/10.1016/j.gene.2017.06.027.

    Article  CAS  PubMed  Google Scholar 

  55. Shao JH, Ding ZR, Peng JH, et al. MiR-146a-5p promotes IL-1 beta-induced chondrocyte apoptosis through the TRAF6-mediated NF-kB pathway. Inflamm Res. 2020;69(6):619–30. https://doi.org/10.1007/s00011-020-01346-w.

    Article  CAS  PubMed  Google Scholar 

  56. Yuan C, Pan Z, Zhao K, et al. Classification of four distinct osteoarthritis subtypes with a knee joint tissue transcriptome atlas. Bone Res. 2020;8(1):38. https://doi.org/10.1038/s41413-020-00109-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lv Z, Yang YX, Li J, et al. Molecular classification of knee osteoarthritis. Fron Cell Dev Biol. 2021;9:725568. https://doi.org/10.3389/fcell.2021.725568.

    Article  Google Scholar 

  58. Skrzypa M, Szala D, Gablo N, et al. miRNA-146a-5p is upregulated in serum and cartilage samples of patients with osteoarthritis. Pol Przegl Chir. 2019;91(3):1–5. https://doi.org/10.5604/01.3001.0013.0135.

    Article  PubMed  Google Scholar 

  59. Zhang M, Wang M, Tan X, Li TF, Zhang YE, Chen D. Smad3 prevents beta-catenin degradation and facilitates beta-catenin nuclear translocation in chondrocytes. J Biol Chem. 2010;285(12):8703–10. https://doi.org/10.1074/jbc.M109.093526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li TF, Darowish M, Zuscik MJ, et al. Smad3-deficient chondrocytes have enhanced BMP signaling and accelerated differentiation. J Bone Miner Res Off J Am Soc Bone Miner Res. 2006;21(1):4–16. https://doi.org/10.1359/jbmr.050911.

    Article  Google Scholar 

  61. Zhen G, Wen C, Jia X, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013;19(6):704–12. https://doi.org/10.1038/nm.3143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Harrell CR, Markovic BS, Fellabaum C, Arsenijevic A, Volarevic V. Mesenchymal stem cell-based therapy of osteoarthritis: Current knowledge and future perspectives. Biomed Pharmacother. 2019;109:2318–26. https://doi.org/10.1016/j.biopha.2018.11.099.

    Article  CAS  PubMed  Google Scholar 

  63. Kroon LMG, Davidson ENB, Narcisi R, Farrell E, Kraan PMV, van Osch G. Activin and nodal are not suitable alternatives to TGFβ for chondrogenic differentiation of mesenchymal stem cells. Cartilage. 2017;8(4):432–8. https://doi.org/10.1177/1947603516667585.

    Article  CAS  PubMed  Google Scholar 

  64. Kou X, Xu X, Chen C, et al. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci Transl Med. 2018. https://doi.org/10.1126/scitranslmed.aai8524.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Berthelot JM, Le Goff B, Maugars Y. Bone marrow mesenchymal stem cells in rheumatoid arthritis, spondyloarthritis, and ankylosing spondylitis: problems rather than solutions? Arthritis Res Ther. 2019;21(1):239. https://doi.org/10.1186/s13075-019-2014-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (81802204) and by Zhejiang University School of Medicine, The First Affiliated Hospital’s Foundation (G2022010-18), Alibaba Cloud, Natural Science Foundation of Zhejiang Province (LTGY23H060007), and Zhejiang Medical and Health Science and Technology Project (2023RC010). The founders had no role in considering the study design or in the collection, analysis, interpretation of data, writing of the report, or decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

HCL, LY, and XKL contributed equally to this work. BW, HCL and LY conceived the idea for the review. BW, HCL, and LY designed, undertook the literature search, and coordinated the study. XKL, DJL, GSW, NNS, and JJL gave crucial intellectual input and provided critical revision for the initial protocol. XKL and DJL contributed to the implementation of the study. HCL, LY, and XKL acquired data, screened records, extracted data, and assessed risk of bias. HCL coded the statistical analysis, figures, and appendix in collaboration with LY and XKL. NNS, JJL, and BW analyzed and interpreted the data. HCL, LY, and BW wrote the first draft of the manuscript. All authors gave crucial feedback on the revised report and approved the final version of the manuscript. BW obtained funding. HCL, YL, XKL, and BW are the guarantors of this manuscript. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Corresponding authors

Correspondence to Nan-Nan Shen, Jiao Jiao Li or Bin Wang.

Ethics declarations

Conflict of interest

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/disclosure-of-interest/ and declare: All authors report no financial relationships with any organizations that might have an interest in the submitted work in the previous three years. All authors report no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval

This is a systematic review and network meta-analysis and does not require ethical approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 230 KB)

Supplementary file2 (DOCX 4563 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yan, L., Li, X. et al. MicroRNA expression in osteoarthritis: a meta-analysis. Clin Exp Med 23, 3737–3749 (2023). https://doi.org/10.1007/s10238-023-01063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01063-8

Keywords

Navigation