Skip to main content

Advertisement

Log in

Metabolic syndrome and the decreased levels of uric acid by leflunomide favor redox imbalance in patients with rheumatoid arthritis

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Oxidative stress plays a role in the pathophysiology of rheumatoid arthritis (RA). The aim of the present study was to verify the influence of metabolic syndrome (MetS) and disease-modifying antirheumatic drugs on nitrosative and oxidative biomarkers in patients with RA. A total of 177 patients with RA and 150 healthy volunteers participated in this study, which measured lipid hydroperoxides, advanced oxidation protein products (AOPP), nitric oxide metabolites (NOx), carbonyl protein, total radical-trapping antioxidant parameter (TRAP), uric acid (UA), and C-reactive protein (CRP). NOx and the NOx/TRAP ratio were significantly increased in RA, while no significant differences in lipid hydroperoxides, AOPP, UA, and TRAP levels were found between both groups. Treatment with leflunomide was associated with increased levels of carbonyl protein, and lowered levels in TRAP and UA, while the NOx/TRAP ratio further increased. NOx and the NOx/TRAP ratio were significantly higher in women than in men, while TRAP and UA were significantly lower in women. MetS was accompanied by increased AOPP and UA levels. RA was best predicted by increased NOx/TRAP ratio, CRP, and BMI. In conclusion, our data demonstrated that NOx and NOx/TRAP are strongly associated with RA physiopathology. Our findings suggest that inhibition of iNOS may become an interesting therapeutic approach for the treatment of RA. In addition, the presence of MetS and a decrease in levels of UA by leflunomide favor redox imbalance in RA patients. More studies are needed to evaluate the impact of antioxidant capacity reduction on RA progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spector T. Rheumatoid arthritis. Rheum Dis Clin N Am. 1990;16:513–37.

    CAS  Google Scholar 

  2. Blanco LP, Ling S, Holoshitz J. Oxidative stress in rheumatoid arthritis: new insights. In: Dichi I, Breganó JW, Simão ANC, Cecchini R, editors. Role oxidative stress chronic diseases. 1st ed. Boca Raton: CRC Press; 2014. p. 481–500.

    Chapter  Google Scholar 

  3. Mateen S, Moin S, Khan AQ, Zafar A, Fatima N. Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS ONE. 2016;11:e0152925.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Schalkwijk J, van der Berg W, van de Putte L, Joosten L. An experimental model for hydrogen peroxide-induced tissue damage. Effects of a single inflammatory mediator on (peri)articular tissues. Arthritis Rheum. 1986;29:532–8.

    Article  PubMed  CAS  Google Scholar 

  5. Hitchon CA, El-Gabalawy HS. Oxidation in rheumatoid arthritis. Arthritis Res Ther. 2004;6:265–78.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Halliwell B. Oxygen radicals, nitric oxide and human inflammatory joint disease. Ann Rheum Dis. 1995;54:505–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hajizadeh S, DeGroot J, TeKoppele JM, Tarkowski A, Collins LV. Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res Ther. 2003;5:R234–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Goldring SR. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology (Oxford). 2003;42(Suppl 2):ii11–6.

    CAS  Google Scholar 

  9. Nakajima A, Aoki Y, Shibata Y, Sonobe M, Terajima F, Takahashi H, et al. Identification of clinical parameters associated with serum oxidative stress in patients with rheumatoid arthritis. Mod Rheumatol. 2014;24:926–30.

    Article  PubMed  CAS  Google Scholar 

  10. Kageyama Y, Takahashi M, Nagafusa T, Torikai E, Nagano A. Etanercept reduces the oxidative stress marker levels in patients with rheumatoid arthritis. Rheumatol Int. 2008;28:245–51.

    Article  PubMed  CAS  Google Scholar 

  11. Cacciapaglia F, Grazia Anelli M, Rizzo D, Morelli E, Mazzotta D, Scioscia C, et al. Effective tumour necrosis factor-blocking therapy reduces reactive oxygen metabolite level in rheumatoid arthritis. J Int Med Res. 2016;44:28–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kizaki K, Yamashita F, Hayashi T, Funakoshi N. Infliximab is equivalently suppressing oxidative stress compared to tocilizumab among well-controlled patients with rheumatoid arthritis. Int J Rheum Dis. 2016. https://doi.org/10.1111/1756-185X.12972.

    Article  PubMed  Google Scholar 

  13. Chimenti MS, Triggianese P, Conigliaro P, Candi E, Melino G, Perricone R. The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis. 2015;6:e1887.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. da Cunha V, Brenol CV, Brenol JC, Fuchs SC, Arlindo EM, Melo IM, et al. Metabolic syndrome prevalence is increased in rheumatoid arthritis patients and is associated with disease activity. Scand J Rheumatol. 2012;41:186–91.

    Article  PubMed  CAS  Google Scholar 

  15. Pierini D, Bryan NS. Nitric oxide availability as a marker of oxidative stress. Methods Mol Biol. 2015;1208:63–71.

    Article  PubMed  CAS  Google Scholar 

  16. Reddy SVB, Wanchu A, Khullar M, Govindrajan S, Bambery P. Leflunomide reduces nitric oxide production in patients with active rheumatoid arthritis. Int Immunopharmacol. 2005;5:1085–90.

    Article  PubMed  CAS  Google Scholar 

  17. Ueki Y, Miyake S, Tominaga Y, Eguchi K. Increased nitric oxide levels in patients with rheumatoid arthritis. J Rheumatol. 1996;23:230–6.

    PubMed  CAS  Google Scholar 

  18. Sakurai H, Kohsaka H, Liu MF, Higashiyama H, Hirata Y, Kanno K, et al. Nitric oxide production and inducible nitric oxide synthase expression in inflammatory arthritides. J Clin Invest. 1995;96:2357–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Moon S-J, Kim E-K, Jhun JY, Lee HJ, Lee WS, Park S-H, et al. The active metabolite of leflunomide, A77 1726, attenuates inflammatory arthritis in mice with spontaneous arthritis via induction of heme oxygenase-1. J Transl Med. 2017;15:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Daoussis D, Kitas GD. Uric acid and cardiovascular risk in rheumatoid arthritis. Rheumatology. 2011;50:1354–5.

    Article  PubMed  CAS  Google Scholar 

  21. Daoussis D, Panoulas V, Toms T, John H, Antonopoulos I, Nightingale P, et al. Uric acid is a strong independent predictor of renal dysfunction in patients with rheumatoid arthritis. Arthritis Res Ther. 2009;11:R116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 2003;425:516–21.

    Article  PubMed  CAS  Google Scholar 

  23. Kang D-H, Park S-K, Lee I-K, Johnson RJ. Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrol. 2005;16:3553–62.

    Article  PubMed  CAS  Google Scholar 

  24. Kanellis J, Watanabe S, Li JH, Kang DH, Li P, Nakagawa T, et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension. 2003;41:1287–93.

    Article  PubMed  CAS  Google Scholar 

  25. Kang DH, Ha SK. Uric acid puzzle: dual role as anti-oxidantand pro-oxidant. Electrolyte Blood Press. 2014;12:1–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Mazzali M, Kanbay M, Segal M, Shafiu M, Jalal D, Feig D, et al. Uric acid and hypertension: cause or effect? Curr Rheumatol Rep. 2010;12:108–17.

    Article  PubMed  CAS  Google Scholar 

  27. Choe JY, Kim SK. Association between serum uric acid and inflammation in rheumatoid arthritis: perspective on lowering serum uric acid of leflunomide. Clin Chim Acta. 2015;438:29–34.

    Article  PubMed  CAS  Google Scholar 

  28. Lee JJ, Bykerk VP, Dresser GK, Boire G, Haraoui B, Hitchon C, et al. Reduction in serum uric acid may be related to methotrexate efficacy in early rheumatoid arthritis: data from the Canadian Early Arthritis Cohort (CATCH). Clin Med Insights Arthritis Musculoskelet Disord. 2016;9:37–43.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Simão ANC, Lozovoy MAB, Dichi I. The uric acid metabolism pathway as a therapeutic target in hyperuricemia related to metabolic syndrome. Expert Opin Ther Targets. 2012;16:1175–87.

    Article  PubMed  CAS  Google Scholar 

  30. Simão A, Dichi J, Barbosa D, Cecchini R, Dichi I. Influence of uric acid and gamma-glutamyltransferase on total antioxidant capacity and oxidative stress in patients with metabolic syndrome. Nutrition. 2008;24:675–81.

    Article  PubMed  CAS  Google Scholar 

  31. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62:2569–81.

    Article  PubMed  Google Scholar 

  32. Grundy S, Brewer HJ, Cleeman J, Smith SJ, Lenfant C. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Arterioscler Thrombolysis Vasc Biol. 2004;24:e13–8.

    Article  CAS  Google Scholar 

  33. Gonzalez Flecha B, Llesuy S, Boveris A. Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med. 1991;10:93–100.

    Article  PubMed  CAS  Google Scholar 

  34. Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357–63.

    Article  PubMed  CAS  Google Scholar 

  35. Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49:1304–13.

    Article  PubMed  CAS  Google Scholar 

  36. Navarro-Gonzálvez JA, García-Benayas C, Arenas J. Semiautomated measurement of nitrate in biological fluids. Clin Chem. 1998;44:679–81.

    PubMed  Google Scholar 

  37. Repetto M, Reides C, Gomez Carretero ML, Costa M, Griemberg G, Llesuy S. Oxidative stress in blood of HIV infected patients. Clin Chim Acta. 1996;255:107–17.

    Article  PubMed  CAS  Google Scholar 

  38. Tsikas D. Methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biological fluids. Free Radic Res. 2005;39:797–815.

    Article  PubMed  CAS  Google Scholar 

  39. Nagy G, Koncz A, Telarico T, Fernandez D, Ersek B, Buzás E, et al. Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther. 2010;12:210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nagy G, Clark JM, Buzas E, Gorman C, Pasztoi M, Koncz A, et al. Nitric oxide production of T lymphocytes is increased in rheumatoid arthritis. Immunol Lett. 2008;118:55–8.

    Article  PubMed  CAS  Google Scholar 

  41. Farrell AJ, Blake DR, Palmer RM, Moncada S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis. 1992;51:1219–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Vasanthi P, Nalini G, Rajasekhar G. Status of oxidative stress in rheumatoid arthritis. Int J Rheum Dis. 2009;12:29–33.

    Article  PubMed  Google Scholar 

  43. van’t Hof RJ, Hocking L, Wright PK, Ralston SH. Nitric oxide is a mediator of apoptosis in the rheumatoid joint. Rheumatology (Oxford). 2000;39:1004–8.

    Article  Google Scholar 

  44. Sokka T, Toloza S, Cutolo M, Kautiainen H, Makinen H, Gogus F, et al. Women, men, and rheumatoid arthritis: analyses of disease activity, disease characteristics, and treatments in the QUEST-RA Study. Arthritis Res Ther. 2009;11:R7.

    PubMed  PubMed Central  Google Scholar 

  45. Reaven GM. Banting Lecture 1988. Role of insulin resistance in human disease. 1988. Nutrition. 1997;13:65 (discussion 64, 66).

    PubMed  CAS  Google Scholar 

  46. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56:1010–3.

    Article  PubMed  CAS  Google Scholar 

  47. Lemarechal H, Allanore Y, Chenevier-Gobeaux C, Kahan A, Ekindjian O, Borderie D. Serum protein oxidation in patients with rheumatoid arthritis and effects of infliximab therapy. Clin Chim Acta. 2006;372:147–53.

    Article  PubMed  CAS  Google Scholar 

  48. Vasconcelos SML, Goulart MOF, de Moura JBF, Benfato MS, Kubota LT. Reactive oxygen and nitrogen species, antioxidants and reactive oxygen and nitrogen species, antioxidants and markers of oxidative damage in human blood: main analytical methods for their determination. Quim Nova. 2007;30:1323–38.

    Article  CAS  Google Scholar 

  49. Venturini D, Simão ANC, Dichi I. Advanced oxidation protein products are more related to metabolic syndrome components than biomarkers of lipid peroxidation. Nutr Res. 2015;35:759–65.

    Article  PubMed  CAS  Google Scholar 

  50. Baskol G, Demir H, Baskol M, Kilic E, Ates F, Karakukcu C, et al. Investigation of protein oxidation and lipid peroxidation in patients with rheumatoid arthritis. Cell Biochem Funct. 2006;24:307–11.

    Article  PubMed  CAS  Google Scholar 

  51. Leitemperguer M, Tatsch E, Kober H, Moresco R. Assessment of ischemia-modified albumin levels in patients with rheumatoid arthritis. Clin Lab. 2014;60:1065–70.

    Article  PubMed  CAS  Google Scholar 

  52. Costa NT, Veiga Iriyoda TM, Kallaur AP, Delongui F, Alfieri DF, Lozovoy MAB, et al. Influence of insulin resistance and TNF on the inflammatory process, oxidative stress, and disease activity in patients with rheumatoid arthritis. Oxid Med Cell Longev. 2016;2016:1–9.

    Google Scholar 

  53. Lozovoy MAB, Simão ANC, Panis C, Rotter MAC, Reiche EMV, Morimoto HK, et al. Oxidative stress is associated with liver damage, inflammatory status, and corticosteroid therapy in patients with systemic lupus erythematosus. Lupus. 2011;20:1250–9.

    Article  PubMed  CAS  Google Scholar 

  54. Oliveira SR, Kallaur AP, Reiche EMV, Kaimen-Maciel DR, Panis C, Lozovoy MAB, et al. Albumin and protein oxidation are predictors that differentiate relapsing-remitting from progressive clinical forms of multiple sclerosis. Mol Neurobiol. 2017;54:2961–8.

    Article  PubMed  CAS  Google Scholar 

  55. Luczaj W, Gindzienska-Sieskiewicz E, Jarocka-Karpowicz I, Andrisic L, Sierakowski S, Zarkovic N, et al. The onset of lipid peroxidation in rheumatoid arthritis: consequences and monitoring. Free Radic Res. 2016;50:304–13.

    Article  PubMed  CAS  Google Scholar 

  56. Isik A, Koca SS, Ustundag B, Celik H, Yildirim A. Paraoxonase and arylesterase levels in rheumatoid arthritis. Clin Rheumatol. 2007;26:342–8.

    Article  PubMed  CAS  Google Scholar 

  57. Jacobson GA, Ives SJ, Narkowicz C, Jones G. Plasma glutathione peroxidase (GSH-Px) concentration is elevated in rheumatoid arthritis: a case-control study. Clin Rheumatol. 2012;31:1543–7.

    Article  PubMed  Google Scholar 

  58. Kajanachumpol S, Vanichapuntu M, Verasertniyom O, Totemchokchyakarn K, Vatanasuk M. Levels of plasma lipid peroxide products and antioxidant status in rheumatoid arthritis. Southeast Asian J Trop Med Public Health. 2000;31:335–8.

    PubMed  CAS  Google Scholar 

  59. Gambhir JK, Lali P, Jain AK. Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin Biochem. 1997;30:351–5.

    Article  PubMed  CAS  Google Scholar 

  60. El-barbary AM, Khalek MAA, Elsalawy AM, Hazaa SM. Assessment of lipid peroxidation and antioxidant status in rheumatoid arthritis and osteoarthritis patients. Egypt Rheumatol. 2011;33:179–85.

    Article  CAS  Google Scholar 

  61. Situnayake RD, Thurnham DI, Kootathep S, Chirico S, Lunec J, Davis M, et al. Chain breaking antioxidant status in rheumatoid arthritis: clinical and laboratory correlates. Ann Rheum Dis. 1991;50:81–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Stöckl D, Döring A, Thorand B, Heier M, Belcredi P, Meisinger C. Reproductive factors and serum uric acid levels in females from the general population: the KORA F4 Study. PLoS ONE. 2012;7:e32668.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Perez-Ruiz F, Nolla J. Influence of leflunomide on renal handling of urate and phosphate in patients with rheumatoid arthritis. J Clin Rheumatol. 2003;9:215–8.

    Article  PubMed  Google Scholar 

  64. Alcorn N, Saunders S, Madhok R. Benefit-risk assessment of leflunomide: an appraisal of leflunomide in rheumatoid arthritis 10 years after licensing. Drug Saf. 2009;32:1123–34.

    Article  PubMed  CAS  Google Scholar 

  65. Osiri M, Shea B, Welch V, Suarez-Almazor ME, Strand V, Tugwell P, et al. Leflunomide for the treatment of rheumatoid arthritis. Cochrane Database Syst. Rev. 2009 (Review).

  66. Haroui B. Leflunomide. In: Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, Weisman MH, editors. Rheumatology, Philadelphia; 2015. p. 451–8.

  67. Elkayam O, Yaron I, Shirazi I, Judovitch R, Caspi D, Yaron M. Active leflunomide metabolite inhibits interleukin 1beta, tumour necrosis factor alpha, nitric oxide, and metalloproteinase-3 production in activated human synovial tissue cultures. Ann Rheum Dis. 2003;62:440–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Arida D, Silva L, Skare T. The hypouricemiant effect of leflunomide. Jt Bone Spine. 2014;81:273–4.

    Article  CAS  Google Scholar 

  69. Luczak A, Knevel R, Huizinga TWJ, van Nies JAB, van der Helm-van Mil A, De Vries-Bouwstra JK. No impact of serum uric acid on the outcome of recent-onset arthritis. Ann Rheum Dis. 2012;71:1424–5.

    Article  PubMed  CAS  Google Scholar 

  70. Panoulas VF, Milionis HJ, Douglas KMJ, Nightingale P, Kita MD, Klocke R, et al. Association of serum uric acid with cardiovascular disease in rheumatoid arthritis. Rheumatology. 2007;46:1466–70.

    Article  PubMed  CAS  Google Scholar 

  71. Kellner H, Bornholdt K, Hein G. Leflunomide in the treatment of patients with early rheumatoid arthritis-results of a prospective non-interventional study. Clin Rheumatol. 2010;29:913–20.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was supported by Grants from Coordination for the Improvement of Higher Level of Education Personnel (CAPES) of Brazilian Ministry of Education; Institutional Program for Scientific Initiation Scholarship (PIBIC) of the National Council for Scientific and Technological Development (CNPq); and State University of Londrina (PROPPG). We thank the University Hospital of State University of Londrina for technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréa Name Colado Simão.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

All the participants included in this study provided written informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, N.T., Scavuzzi, B.M., Iriyoda, T.M.V. et al. Metabolic syndrome and the decreased levels of uric acid by leflunomide favor redox imbalance in patients with rheumatoid arthritis. Clin Exp Med 18, 363–372 (2018). https://doi.org/10.1007/s10238-018-0500-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-018-0500-y

Keywords

Navigation