Skip to main content

Advertisement

Log in

Anticancer effect of arsenic trioxide on cholangiocarcinoma: in vitro experiments and in vivo xenograft mouse model

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The purpose of our study was to investigate anticancer activity of arsenic trioxide (As2O3) on cholangiocarcinoma through in vitro and in vivo experiments using human cholangiocarcinoma cancer cells (CC-t6 cells) and a nude mouse model. The effect of As2O3 on CC-t6 cell survival was determined in vitro using MTT assay. Analysis of cell cycle phase distribution and quantification of apoptosis/necrosis, which were achieved by flow cytometry, were performed in order to understand the mechanism of As2O3. In vivo experiment was performed to assess the effectiveness of local injection of As2O3 on tumor inhibition by comparing the following three groups each consisting of five nude mouse xenograft models: high dose As2O3 (5 mg/kg), low dose As2O3 (1 mg/kg), and saline. In MTT assay, As2O3 inhibited the growth of CC-t6 cells more effectively than cisplatin or adriamycin at concentrations between 1 and 100 μM for most time points between 24 and 72 h (p < 0.05). With increased concentration of As2O3, there was dose-dependent increase in G 0/G 1 phase and dose-dependent decrease in S phase. As2O3-mediated inhibition of cell viability was achieved via induction of apoptosis and necrosis in a dose-dependent manner. Injection of As2O3 into CC-t6-induced tumors in nude mice inhibited the growth of subcutaneous tumor xenografts. As2O3 treatment dose-dependently inhibited the proliferation of CC-t6 cells via G 0/G 1 phase arrest and retarded tumor growth in nude mice, suggesting that As2O3 may be effective in the treatment of cholangiocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burger I, Hong K, Schulick R, Georgiades C, Thuluvath P, Choti M, Kamel I, Geschwind JF (2005) Transcatheter arterial chemoembolization in unresectable cholangiocarcinoma: initial experience in a single institution. J Vasc Interv Radiol 16:353–361

    Article  PubMed  Google Scholar 

  2. Shaib YH, El-Serag HB, Nooka AK, Thomas M, Brown TD, Patt YZ, Hassan MM (2007) Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a hospital-based case-control study. Am J Gastroenterol 102:1016–1021

    Article  PubMed  Google Scholar 

  3. Primary liver cancer in Japan (1990) Clinicopathologic features and results of surgical treatment. Liver Cancer Study Group of Japan. Ann Surg 211:277–287

    Google Scholar 

  4. The Statistics of Cancer Registry (2008) The annual report of national cancer registry. Ministry of Health and Welfare/National cancer center, Korea

    Google Scholar 

  5. Patel T (2001) Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology 33:1353–1357

    Article  CAS  PubMed  Google Scholar 

  6. Hammill CW, Wong LL (2008) Intrahepatic cholangiocarcinoma: a malignancy of increasing importance. J Am Coll Surg 207:594–603

    Article  PubMed  Google Scholar 

  7. Madariaga JR, Iwatsuki S, Todo S, Lee RG, Irish W, Starzl TE (1998) Liver resection for hilar and peripheral cholangiocarcinomas: a study of 62 cases. Ann Surg 227:70–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ohtsuka M, Ito H, Kimura F, Shimizu H, Togawa A, Yoshidome H, Miyazaki M (2002) Results of surgical treatment for intrahepatic cholangiocarcinoma and clinicopathological factors influencing survival. Br J Surg 89:1525–1531

    Article  CAS  PubMed  Google Scholar 

  9. Kim JH, Yoon HK, Sung KB, Ko GY, Gwon DI, Shin JH, Song HY (2008) Transcatheter arterial chemoembolization or chemoinfusion for unresectable intrahepatic cholangiocarcinoma: clinical efficacy and factors influencing outcomes. Cancer 113:1614–1622

    Article  PubMed  Google Scholar 

  10. Antman KH (2001) Introduction: the history of arsenic trioxide in cancer therapy. Oncologist 6(Suppl 2):1–2

    Article  CAS  PubMed  Google Scholar 

  11. Kwong YL, Todd D (1997) Delicious poison: arsenic trioxide for the treatment of leukemia. Blood 89:3487–3488

    CAS  PubMed  Google Scholar 

  12. Zhang P, Wang S, Hu L, Qiu F, Yang H, Xiao Y, Li X, Han X, Zhou J, Liu P (2000) Seven years’ summary report on the treatment of acute promyelocytic leukemia with arsenic trioxide–an analysis of 242 cases. Zhonghua Xue Ye Xue Za Zhi 21:67–70

    PubMed  Google Scholar 

  13. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, Chen Y, Zhou L, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z, Wang ZY (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89:3354–3360

    CAS  PubMed  Google Scholar 

  14. Murgo AJ (2001) Clinical trials of arsenic trioxide in hematologic and solid tumors: overview of the National Cancer Institute Cooperative Research and Development Studies. Oncologist 6(Suppl 2):22–28

    Article  CAS  PubMed  Google Scholar 

  15. Zheng J, Deng YP, Lin C, Fu M, Xiao PG, Wu M (1999) Arsenic trioxide induces apoptosis of HPV16 DNA-immortalized human cervical epithelial cells and selectively inhibits viral gene expression. Int J Cancer 82:286–292

    Article  CAS  PubMed  Google Scholar 

  16. Shen ZY, Zhang Y, Chen JY, Chen MH, Shen J, Luo WH, Zeng Y (2004) Intratumoral injection of arsenic to enhance antitumor efficacy in human esophageal carcinoma cell xenografts. Oncol Rep 11:155–159

    CAS  PubMed  Google Scholar 

  17. Zhong F, Zhang S, Shao C, Yang J, Wu X (2010) Arsenic trioxide inhibits cholangiocarcinoma cell growth and induces apoptosis. Pathol Oncol Res 16:413–420

    Article  CAS  PubMed  Google Scholar 

  18. Institute of Laboratory Animal Research (1996) Commission on life sciences, national research council. National Academy Press, Washington

    Google Scholar 

  19. Krishan A (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66:188–193

    Article  CAS  PubMed  Google Scholar 

  20. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    Article  CAS  PubMed  Google Scholar 

  21. Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, Corso D, DeBlasio A, Gabrilove J, Scheinberg DA, Pandolfi PP, Warrell RP Jr (1998) Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 339:1341–1348

    Article  CAS  PubMed  Google Scholar 

  22. Charoentum C, Thongprasert S, Chewaskulyong B, Munprakan S (2007) Experience with gemcitabine and cisplatin in the therapy of inoperable and metastatic cholangiocarcinoma. World J Gastroenterol 13:2852–2854

    CAS  PubMed  Google Scholar 

  23. Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira SP, Roughton M, Bridgewater J (2010) Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 362(14):1273–1281

    Article  CAS  PubMed  Google Scholar 

  24. Kirchhoff T, Zender L, Merkesdal S, Frericks B, Malek N, Bleck J, Kubicka S, Baus S, Chavan A, Manns MP, Galanski M (2005) Initial experience from a combination of systemic and regional chemotherapy in the treatment of patients with nonresectable cholangiocellular carcinoma in the liver. World J Gastroenterol 11:1091–1095

    PubMed  Google Scholar 

  25. Park SH, Park YH, Lee JN, Bang SM, Cho EK, Shin DB, Lee JH (2006) Phase II study of epirubicin, cisplatin, and capecitabine for advanced biliary tract adenocarcinoma. Cancer 106:361–365

    Article  CAS  PubMed  Google Scholar 

  26. Kito M, Akao Y, Ohishi N, Yagi K, Nozawa Y (2002) Arsenic trioxide-induced apoptosis and its enhancement by buthionine sulfoximine in hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 291:861–867

    Article  CAS  PubMed  Google Scholar 

  27. Wang ZG, Rivi R, Delva L, Konig A, Scheinberg DA, Gambacorti-Passerini C, Gabrilove JL, Warrell RP Jr, Pandolfi PP (1998) Arsenic trioxide and melarsoprol induce programmed cell death in myeloid leukemia cell lines and function in a PML and PML-RARalpha independent manner. Blood 92:1497–1504

    CAS  PubMed  Google Scholar 

  28. Maeda H, Hori S, Nishitoh H, Ichijo H, Ogawa O, Kakehi Y, Kakizuka A (2001) Tumor growth inhibition by arsenic trioxide (As2O3) in the orthotopic metastasis model of androgen-independent prostate cancer. Cancer Res 61:5432–5440

    CAS  PubMed  Google Scholar 

  29. Ora I, Bondesson L, Jonsson C, Ljungberg J, Porn-Ares I, Garwicz S, Pahlman S (2000) Arsenic trioxide inhibits neuroblastoma growth in vivo and promotes apoptotic cell death in vitro. Biochem Biophys Res Commun 277:179–185

    Article  CAS  PubMed  Google Scholar 

  30. Xiao YF, Wu DD, Liu SX, Chen X, Ren LF (2007) Effect of arsenic trioxide on vascular endothelial cell proliferation and expression of vascular endothelial growth factor receptors Flt-1 and KDR in gastric cancer in nude mice. World J Gastroenterol 13:6498–6505

    Article  CAS  PubMed  Google Scholar 

  31. Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Cancer Res 62:3893–3903

    CAS  PubMed  Google Scholar 

  32. Nakagawa Y, Akao Y, Morikawa H, Hirata I, Katsu K, Naoe T, Ohishi N, Yagi K (2002) Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines. Life Sci 70:2253–2269

    Article  CAS  PubMed  Google Scholar 

  33. Dai J, Weinberg RS, Waxman S, Jing Y (1999) Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 93:268–277

    CAS  PubMed  Google Scholar 

  34. Chen YC, Lin-Shiau SY, Lin JK (1998) Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 177:324–333

    Article  CAS  PubMed  Google Scholar 

  35. Kim HJ, Shin JH, Kim TH, Kim EY, Park YS, Park CS, Song HY (2009) Efficacy of transarterial embolization with arsenic trioxide oil emulsion in a rabbit VX2 liver tumor model. J Vasc Interv Radiol 20:1365–1370

    Article  PubMed  Google Scholar 

  36. Huang SY, Chang CS, Tang JL, Tien HF, Kuo TL, Huang SF, Yao YT, Chou WC, Chung CY, Wang CH, Shen MC, Chen YC (1998) Acute and chronic arsenic poisoning associated with treatment of acute promyelocytic leukaemia. Br J Haematol 103:1092–1095

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea Grant from the Korean Government (KRF-2006-331-E00111). This study was supported by a grant (2011-312) from the Asan Institute for Life Sciences, Seoul, Korea.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Hoon Shin.

Additional information

Eun-Young Kim and Sang Soo Lee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, EY., Lee, S.S., Shin, J.H. et al. Anticancer effect of arsenic trioxide on cholangiocarcinoma: in vitro experiments and in vivo xenograft mouse model. Clin Exp Med 14, 215–224 (2014). https://doi.org/10.1007/s10238-013-0233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-013-0233-x

Keywords

Navigation