Skip to main content
Log in

Cord blood dendritic cells prevent the differentiation of naïve T-helper cells towards Th1 irrespective of their subtype

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Allogeneic cord blood transplantation is associated with a less severe graft-versus-host disease (GVHD). This observation is thought to be due to immaturity of cord blood cell immune capabilities. Dendritic cells (DCs) are the most potent antigen-presenting cells of the immune system capable of initiation and regulation of immune responses. In this investigation, we hypothesized that non-manipulated cord blood dendritic cells (CBDCs) not only differ in their functional maturity from adult peripheral blood DCs (PBDCs) but also differ in their subsets and their preference in promoting Th1 or Th2 immune responses. Non-manipulated fresh DCs were isolated from cord blood (CB) and adult peripheral blood (PB) mononuclear cells as lineage marker negative cells. The differences in expression of costimulatory molecules, the proportion of myeloid and lymphoid DCs subsets, their immunostimulatory characteristics and their influence on promoting the differentiation of naïve T cells towards Th1 or Th2 cells were then investigated in these two populations. Our results showed that freshly isolated CBDCs, similar to cord blood monocyte derived DCs, were poor inducers of IFN-γ secretion while they increased the induction of IL-4 production by T cells in comparison with PBDCs. CBDCs were also poor stimulators of allogenic T cells in mixed leukocyte reaction compared to adult peripheral blood dendritic cells. They also displayed decreased expression of HLA-DR and CD86 molecules. The ratio of lymphoid DCs (CD11c, CD123+) to myeloid DCs (CD11c+, CD123) was significantly higher in CB compared to PB. We conclude that CBDCs preferential priming of naive T cells towards Th2 population, seems to be an intrinsic property independent of their subtype. This property along with their functional immaturity should contribute to outcome of cord blood transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rocha V, Wagner JE Jr, Sobocinski KA, Klein JP, Zhang MJ, Horowitz MM et al (2000) Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N Engl J Med 342:1846–1854

    Article  PubMed  CAS  Google Scholar 

  2. Teshima T, Ferrara JL (2002) Understanding the alloresponse: new approaches to graft-versus-host disease prevention. Semin Hematol 39:15–22

    Article  PubMed  Google Scholar 

  3. Yamazaki S, Inaba K, Tarbell KV, Steinman RM (2006) Dendritic cells expand antigen-specific Foxp3+CD25+CD4+regulatory T cells including suppressors of alloreactivity. Immunol Rev 212:314–329

    Article  PubMed  CAS  Google Scholar 

  4. Shlomchik WD, Couzens MS, Tang CB, McNiff J, Robert ME, Liu J et al (1999) Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 285:412–415

    Article  PubMed  CAS  Google Scholar 

  5. Ferrara JL, Cooke KR, Pan L, Krenger W (1996) The immunopathophysiology of acute graft-versus-host-disease. Stem Cells 14:473–489

    PubMed  CAS  Google Scholar 

  6. Hart DN (1997) Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90:3245–3287

    PubMed  CAS  Google Scholar 

  7. Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296

    Article  PubMed  CAS  Google Scholar 

  8. Fazekas de St Groth B (1998) The evolution of self-tolerance: a new cell arises to meet the challenge of self-reactivity. Immunol Today 19:448–454

    Article  PubMed  CAS  Google Scholar 

  9. Steptoe RJ, Thomson AW (1996) Dendritic cells and tolerance induction. Clin Exp Immunol 105:397–402

    Article  PubMed  CAS  Google Scholar 

  10. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S et al (2000) BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 165:6037–6046

    PubMed  CAS  Google Scholar 

  11. O’Doherty U, Steinman RM, Peng M, Cameron PU, Gezelter S, Kopeloff I et al (1993) Dendritic cells freshly isolated from human blood express CD4 and mature into typical immunostimulatory dendritic cells after culture in monocyte-conditioned medium. J Exp Med 178:1067–1076

    Article  PubMed  CAS  Google Scholar 

  12. Thomas R, Davis LS, Lipsky PE (1993) Isolation and characterization of human peripheral blood dendritic cells. J Immunol 150:821–834

    PubMed  CAS  Google Scholar 

  13. Almeida J, Bueno C, Alguero MC, Sanchez ML, Canizo MC, Fernandez ME et al (1999) Extensive characterization of the immunophenotype and pattern of cytokine production by distinct subpopulations of normal human peripheral blood MHC II +/lineage- cells. Clin Exp Immunol 118:392–401

    Article  PubMed  CAS  Google Scholar 

  14. Almeida J, Bueno C, Alguero MC, Sanchez ML, de Santiago M, Escribano L et al (2001) Comparative analysis of the morphological, cytochemical, immunophenotypical, and functional characteristics of normal human peripheral blood lineage(-)/CD16(+)/HLA-DR(+)/CD14(-/lo) cells, CD14(+) monocytes, and CD16(-) dendritic cells. Clin Immunol 100:325–338

    Article  PubMed  CAS  Google Scholar 

  15. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  PubMed  CAS  Google Scholar 

  16. Lechler R, Ng WF, Steinman RM (2001) Dendritic cells in transplantation–friend or foe? Immunity 14:357–368

    Article  PubMed  CAS  Google Scholar 

  17. Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA 99:351–358

    Article  PubMed  CAS  Google Scholar 

  18. McLellan AD, Starling GC, Williams LA, Hock BD, Hart DN (1995) Activation of human peripheral blood dendritic cells induces the CD86 co-stimulatory molecule. Eur J Immunol 25:2064–2068

    Article  PubMed  CAS  Google Scholar 

  19. Hunt DW, Huppertz HI, Jiang HJ, Petty RE (1994) Studies of human cord blood dendritic cells: evidence for functional immaturity. Blood 84:4333–4343

    PubMed  CAS  Google Scholar 

  20. Petty RE, Hunt DW (1998) Neonatal dendritic cells. Vaccine 16:1378–1382

    Article  PubMed  CAS  Google Scholar 

  21. Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R et al (1999) Reciprocal control of T helper cell and dendritic cell differentiation. Science 283:1183–1186

    Article  PubMed  CAS  Google Scholar 

  22. Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161

    Article  PubMed  CAS  Google Scholar 

  23. Sorg RV, Kogler G, Wernet P (1999) Identification of cord blood dendritic cells as an immature CD11c-population. Blood 93:2302–2307

    PubMed  CAS  Google Scholar 

  24. Borras FE, Matthews NC, Lowdell MW, Navarrete CV (2001) Identification of both myeloid CD11c + and lymphoid CD11c-dendritic cell subsets in cord blood. Br J Haematol 113:925–931

    Article  PubMed  CAS  Google Scholar 

  25. Moser M, Murphy KM (2000) Dendritic cell regulation of TH1–TH2 development. Nat Immunol 1:199–205

    Article  PubMed  CAS  Google Scholar 

  26. Yamaguchi N, Fujimori Y, Fujibayashi Y, Kasumoto I, Okamura H, Nakanishi K, Hara H (2005) Interferon-gamma production by human cord blood monocyte-derived dendritic cells. Ann Hematol 84:423–428

    Article  PubMed  CAS  Google Scholar 

  27. Langrish CL, Buddle JC, Thrasher AJ, Goldblatt D (2002) Neonatal dendritic cells are intrinsically biased against Th-1 immune responses. Clin Exp Immunol 128:118–123

    Article  PubMed  CAS  Google Scholar 

  28. Goriely S, Vincart B, Stordeur P, Vekemans J, Willems F, Goldman M et al (2001) Deficient IL-12(p35) gene expression by dendritic cells derived from neonatal monocytes. J Immunol 166:2141–2146

    PubMed  CAS  Google Scholar 

  29. Liu E, Tu W, Law HK, Lau YL (2001) Decreased yield, phenotypic expression and function of immature monocyte-derived dendritic cells in cord blood. Br J Haematol 113:240–246

    Article  PubMed  CAS  Google Scholar 

  30. McLellan AD, Sorg RV, Williams LA, Hart DN (1996) Human dendritic cells activate T lymphocytes via a CD40: CD40 ligand-dependent pathway. Eur J Immunol 26:1204–1210

    Article  PubMed  CAS  Google Scholar 

  31. Darmochwal-Kolarz D, Rolinski J, Buczkowski J, Tabarkiewicz J, Leszczynska-Gorzelak B, Zych I et al (2004) CD1c(+) immature myeloid dendritic cells are predominant in cord blood of healthy neonates. Immunol Lett 91:71–74

    Article  PubMed  CAS  Google Scholar 

  32. Hausser G, Ludewig B, Gelderblom HR, Tsunetsugu-Yokota Y, Akagawa K, Meyerhans A (1997) Monocyte-derived dendritic cells represent a transient stage of differentiation in the myeloid lineage. Immunobiology 197:534–542

    PubMed  CAS  Google Scholar 

  33. Vanden Eijnden S, Goriely S, De Wit D, Goldman M, Willems F (2006) Preferential production of the IL-12(p40)/IL-23(p19) heterodimer by dendritic cells from human newborns. Eur J Immunol 36:21–26

    Article  PubMed  CAS  Google Scholar 

  34. Macatonia SE, Hosken NA, Litton M, Vieira P, Hsieh CS, Culpepper JA et al (1995) Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4 + T cells. J Immunol 154:5071–5079

    PubMed  CAS  Google Scholar 

  35. Trinchieri G (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 13:251–276

    Article  PubMed  CAS  Google Scholar 

  36. Arulanandam BP, Van Cleave VH, Metzger DW (1999) IL-12 is a potent neonatal vaccine adjuvant. Eur J Immunol 29:256–264

    Article  PubMed  CAS  Google Scholar 

  37. Donckier V, Flamand V, Desalle F, Vanderhaeghen ML, de Veerman M, Thielemans K et al (1998) IL-12 prevents neonatal induction of transplantation tolerance in mice. Eur J Immunol 28:1426–1430

    Article  PubMed  CAS  Google Scholar 

  38. De Wit D, Tonon S, Olislagers V, Goriely S, Boutriaux M, Goldman M et al (2003) Impaired responses to toll-like receptor 4 and toll-like receptor 3 ligands in human cord blood. J Autoimmun 21:277–281

    Article  PubMed  CAS  Google Scholar 

  39. Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML (1999) T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 20:561–267

    Article  PubMed  CAS  Google Scholar 

  40. Wegmann TG, Lin H, Guilbert L, Mosmann TR (1993) Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today 14:353–356

    Article  PubMed  CAS  Google Scholar 

  41. Guller S, LaChapelle L (1999) The role of placental Fas ligand in maintaining immune privilege at maternal-fetal interfaces. Semin Reprod Endocrinol 17:39–44

    Article  PubMed  CAS  Google Scholar 

  42. Zarnani AH, Moazzeni SM, Shokri F, Salehnia M, Jeddi-Tehrani M (2007) Kinetics of murine decidual dendritic cells. Reproduction 133:275–283

    Article  PubMed  CAS  Google Scholar 

  43. Shojaeian J, Moazzeni SM, Nikoo S, Bozorgmehr M, Nikougoftar M, Zarnani AH (2007) Immunosuppressive effect of pregnant mouse serum on allostimulatory activity of dendritic cells. J Reprod Immunol 75:23–31

    Article  PubMed  CAS  Google Scholar 

  44. Zarnani AH, Moazzeni SM, Shokri F, Salehnia M, Dokouhaki P, Ghods R, et al (2008) Microenvironment of the feto-maternal interface protects the semiallogenic fetus through its immunomodulatory activity on dendritic cells. Fertil Steril 90:781–788

    Article  PubMed  Google Scholar 

  45. Niederwieser D, Herold M, Woloszczuk W, Aulitzky W, Meister B, Tilg H et al (1990) Endogenous IFN-gamma during human bone marrow transplantation. Analysis of serum levels of interferon and interferon-dependent secondary messages. Transplantation 50:620–625

    Article  PubMed  CAS  Google Scholar 

  46. Arpinati M, Green CL, Heimfeld S, Heuser JE, Anasetti C (2000) Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 95:2484–2490

    PubMed  CAS  Google Scholar 

  47. Paiva A, Ferreira T, Freitas A, Couceiro A, Coimbra H, Regateiro FJ (2000) Profile of cytokine production in human cord blood and peripheral blood from healthy donors before and after allogeneic activation: relevance in predicting graft-versus-host disease. Transplant Proc 32:2626–2630

    Article  PubMed  CAS  Google Scholar 

  48. Paiva A, Freitas A, Loureiro A, Couceiro A, Martinho A, Simoes O et al (1998) Functional aspects of cord blood lymphocytes response to polyclonal and allogeneic activation. Bone Marrow Transplant 22(Suppl 1):S31–S34

    PubMed  Google Scholar 

  49. Encabo A, Solves P, Carbonell-Uberos F, Miñana MD (2007) The functional immaturity of dendritic cells can be relevant to increased tolerance associated with cord blood transplantation. Transfusion 47:272–279

    Article  PubMed  CAS  Google Scholar 

  50. Takahata Y, Nomura A, Takada H, Ohga S, Furuno K, Hikino S et al (2004) CD25+CD4+T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene. Exp Hematol 32:622–629

    Article  PubMed  CAS  Google Scholar 

  51. Chang CC, Satwani P, Oberfield N, Vlad G, Simpson LL, Cairo MS (2005) Increased induction of allogeneic-specific cord blood CD4 + CD25 + regulatory T (Treg) cells: a comparative study of naïve and antigenic-specific cord blood Treg cells. Exp Hematol 33:1508–1520

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the obstetric staff of the Shriati Hospital, for their assistance with cord blood collection and Mrs. Nikougofatar for her invaluable technical assistance in flow cytometry. This work was supported by a grant from the Iranian Blood Transfusion Organization Research Center and Hematology, Oncology and BMT Research Center of Tehran University of Medical Sciences.

Conflict of interest statement

The authors declare that they have no conflict of interest related to the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Moazzeni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naderi, N., Pourfathollah, A.A., Alimoghaddam, K. et al. Cord blood dendritic cells prevent the differentiation of naïve T-helper cells towards Th1 irrespective of their subtype. Clin Exp Med 9, 29–36 (2009). https://doi.org/10.1007/s10238-008-0020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-008-0020-2

Keywords

Navigation