Skip to main content
Log in

Influence of the biomechanical environment on the femoral stem insertion and vibrational behavior: a 3-D finite element study

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The long-term success of cementless surgery strongly depends on the implant primary stability. The femoral stem initial fixation relies on multiple geometrical and material factors, but their influence on the biomechanical phenomena occurring during the implant insertion is still poorly understood, as they are difficult to quantify in vivo. The aim of the present study is to evaluate the relationship between the resonance frequencies of the bone–implant–ancillary system and the stability of the femoral stem under various biomechanical environments. The interference fit IF, the trabecular bone Young’s modulus \(E_t\) and the bone–implant contact friction coefficient \(\mu\) are varied to investigate their influence on the implant insertion phenomena and on the system vibration behavior. The results exhibit for all the configurations, a nonlinear increase in the bone–implant contact throughout femoral stem insertion, until the proximal contact is reached. While the pull-out force increases with \(E_t\), IF and \(\mu\), the bone–implant contact ratio decreases, which shows that a compromise on the set of parameters could be found in order to achieve the largest bone–implant contact while maintaining sufficient pull-out force. The modal analysis on the range [2-7] kHz shows that the resonance frequencies of the bone–implant–ancillary system increase with the bone–implant contact ratio and the trabecular bone Young’s modulus, with a sensitivity that varies over the modes. Both the pull-out forces and the vibration behavior are consistent with previous experimental studies. This study demonstrates the potential of using vibration methods to guide the surgeons for optimizing implant stability in various patients and surgical configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

The data that support the findings within this study are available from the corresponding author upon reasonable request.

References

  • Abdel MP, Watts CD, Houdek MT, Lewallen DG, Berry DJ (2016) Epidemiology of periprosthetic fracture of the femur in 32 644 primary total hip arthroplasties: a 40-year experience. Bone Joint J 98(4):461–467. https://doi.org/10.1302/0301-620X.98B4.37201 ISSN 2049-4408

  • Abdul-Kadir MR, Hansen U, Klabunde R, Lucas D, Amis A (2008) Finite element modelling of primary hip stem stability: the effect of interference fit. J Biomech 41(3):587–594. https://doi.org/10.1016/j.jbiomech.2007.10.009 ISSN 0021-9290

  • Bayliss LE, Culliford D, Monk AP, Glyn-Jones S, Prieto-Alhambra D, Judge A, Cooper C, Carr AJ, Arden NK, Beard DJ, Price AJ (2017) The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: a population-based cohort study. Lancet 389(10077):1424–1430. https://doi.org/10.1016/S0140-6736(17)30059-4 ISSN 0140-6736

  • Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM (2004) Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37(1):27–35. https://doi.org/10.1016/s0021-9290(03)00257-4 ISSN 0021-9290

  • Bishop NE, Höhn J-C, Rothstock S, Damm NB, Morlock MM (2014) The influence of bone damage on press-fit mechanics. J Biomech 47(6):1472–1478. https://doi.org/10.1016/j.jbiomech.2014.01.029 ISSN 1873-2380

  • Bishop NE, Wright P, Preutenborbeck M (2022) A parametric numerical analysis of femoral stem impaction. Plos One. https://doi.org/10.1371/journal.pone.0268561 ISSN 1932-6203

  • Bosc R, Tijou A, Rosi G, Nguyen V-H, Meningaud J-P, Hernigou P, Flouzat-Lachaniette C-H, Haiat G (2018) Influence of soft tissue in the assessment of the primary fixation of acetabular cup implants using impact analyses. Clin Biomech 55:7–13. https://doi.org/10.1016/j.clinbiomech.2018.03.013 ISSN 02680033

  • Brown TD, Ferguson AB (1980) Mechanical property distributions in the cancellous bone of the human proximal femur. Acta Orthop Scand 51(1–6):429–437. https://doi.org/10.3109/17453678008990819 ISSN 0001-6470

  • Carli AV, Negus JJ, Haddad FS (2017) Periprosthetic femoral fractures and trying to avoid them: what is the contribution of femoral component design to the increased risk of periprosthetic femoral fracture? Bone Joint J 99:50–59. https://doi.org/10.1302/0301-620X.99B1.BJJ-2016-0220.R1 ISSN 2049-4408

  • Corbett KL, Losina E, Nti AA, Prokopetz JJZ, Katz JN (2010) Population-based rates of revision of primary total hip arthroplasty: a systematic review. Plos One https://doi.org/10.1371/journal.pone.0013520 ISSN 1932-6203

  • Damm NB, Morlock MM, Bishop NE (2015) Friction coefficient and effective interference at the implant-bone interface. J Biomech 48 (12): 3517–3521 https://doi.org/10.1016/j.jbiomech.2015.07.012 ISSN 1873-2380

  • Dammak M, Shirazi-Adl A, Schwartz Jr. M, Gustavson L (1997) Friction properties at the bone-metal interface: Comparison of four different porous metal surfaces. J Biomed Mater Res, 35 (3): 329–336 https://doi.org/10.1002/(SICI)1097-4636(19970605)35:3<329::AID-JBM7>3.0.CO;2-J ISSN 1097-4636

  • Dickinson AS, Taylor AC, Ozturk H, Browne M (2011) Experimental validation of a finite element model of the proximal femur using digital image correlation and a composite bone model. J Biomech Eng https://doi.org/10.1115/1.4003129 ISSN 1528-8951

  • Dopico-González C, New AM, Browne M (2010) Probabilistic finite element analysis of the uncemented hip replacement–effect of femur characteristics and implant design geometry. J Biomech, 43 (3): 512–520 https://doi.org/10.1016/j.jbiomech.2009.09.039 ISSN 1873-2380

  • Doyle R, van Arkel RJ, Muirhead-Allwood S, Jeffers JRT (2020) Impaction technique influences implant stability in low-density bone model. Bone Joint Res 9(7):386–393. https://doi.org/10.1302/2046-3758.97.BJR-2019-0303.R1

    Article  Google Scholar 

  • Engh CA, O’Connor D, Jasty M, McGovern TF, Bobyn JD, Harris WH (1992) Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses. Clin Orthop Relat Res 285:13–29 ISSN 0009-921X

  • Engh CA, Young AM, Engh CA, Hopper RH (2003) Clinical consequences of stress shielding after porous-coated total hip arthroplasty. Clin Orthop Relat Res, (417): 157–163 https://doi.org/10.1097/01.blo.0000096825.67494.e3 ISSN 0009-921X

  • Fitzgerald RHJ, Brindley GW, Kavanagh BF (1988) The uncemented total hip arthroplasty: intraoperative femoral fractures. Clin Orthop Relat Res, 235: 61–66 ISSN 0009-921X

  • Folgado J, Fernandes P, Jacobs C, Pellegrini V (2009) Influence of femoral stem geometry, material and extent of porous coating on bone ingrowth and atrophy in cementless total hip arthroplasty: an iterative finite element model. Comput Methods Biomech Biomed Eng, 12 (2): 135–145 https://doi.org/10.1080/10255840802546754 ISSN 1025-5842

  • Gebert A, Peters J, Bishop NE, Westphal F, Morlock MM (2009) Influence of press-fit parameters on the primary stability of uncemented femoral resurfacing implants. Med Eng Phys, 31 (1): 160–164 https://doi.org/10.1016/j.medengphy.2008.04.007 ISSN 1350-4533

  • Herrera A, Panisello JJ, Ibarz E, Cegoñino J, Puértolas JA, Gracia L (2007) Long-term study of bone remodelling after femoral stem: a comparison between dexa and finite element simulation. J Biomech, 40 (16): 3615–3625 https://doi.org/10.1016/j.jbiomech.2007.06.008 ISSN 0021-9290

  • Hériveaux Y, Le Cann S, Immel K, Vennat E, Nguyen V-H, Brailovski, Karasinski P, Sauer RA, Haiat G (2022) Mechanical micromodeling of the bone-implant interphase under shear loading. Med Biol Eng Comput

  • Immel K, Duong TX, Nguyen V-H, Haïat G, Sauer RA (2020) A modified Coulomb’s law for the tangential debonding of osseointegrated implants. Biomech Model Mechanobiol, 19 (3): 1091–1108 https://doi.org/10.1007/s10237-019-01272-9 ISSN 1617-7940

  • Immel K, Nguyen V-H, Dubory A, Flouzat-Lachaniette C-H, Sauer RA, Haïat G (2021) Determinants of the primary stability of cementless acetabular cup implants: a 3D finite element study. Comput Biol Med 135:104607. https://doi.org/10.1016/j.compbiomed.2021.104607 ISSN 00104825

  • Joshi MG, Advani SG, Miller F, Santare MH (2000) Analysis of a femoral hip prosthesis designed to reduce stress shielding. J Biomech, 33 (12): 1655–1662 https://doi.org/10.1016/S0021-9290(00)00110-X ISSN 0021-9290

  • Katsamanis F, Raftopoulos DD (1990) Determination of mechanical properties of human femoral cortical bone by the Hopkinson bar stress technique. J Biomech 23 (11): 1173–1184 https://doi.org/10.1016/0021-9290(90)90010-Z ISSN 0021-9290

  • Khanuja HS, Vakil JJ, Goddard MS, Mont MA (2011) Cementless femoral fixation in total hip arthroplasty. J Bone Joint Surg 93 (5): 500–509 https://doi.org/10.2106/JBJS.J.00774 ISSN 0021-9355

  • Kim YH, Kim JS, Cho SH (2001) Strain distribution in the proximal human femur. An in vitro comparison in the intact femur and after insertion of reference and experimental femoral stems. J Bone Joint Surg 83 (2): 295–301 https://doi.org/10.1302/0301-620x.83b2.10108 ISSN 0301-620X

  • Konow T, Bätz J, Beverland D, Board T, Lampe F, Püschel K, Morlock MM (2022) Variability in femoral preparation and implantation between surgeons using manual and powered impaction in total hip arthroplasty. Arthroplast Today 14: 14–21 https://doi.org/10.1016/j.artd.2021.10.005 ISSN 2352-3441

  • Kuiper JH, Huiskes R (1997) The predictive value of stress shielding for quantification of adaptive bone resorption around hip replacements. J Biomech Eng 119 (3): 228–231 https://doi.org/10.1115/1.2796084 ISSN 0148-0731

  • Lamb JN, Matharu GS, Redmond A, Judge A, West RM, Pandit HG (2019) Risk factors for intraoperative periprosthetic femoral fractures during primary total hip arthroplasty. An analysis from the national joint registry for England and Wales and the Isle of Man. J Arthroplast 34 (12): 3065–3073 https://doi.org/10.1016/j.arth.2019.06.062 ISSN 1532-8406

  • Leuridan S, Goossens Q, Pastrav L, Roosen J, Mulier M, Denis K, Desmet W, Sloten JV (2017) Determination of replicate composite bone material properties using modal analysis. J Mech Behav Biomed Mater 66: 12–18 https://doi.org/10.1016/j.jmbbm.2016.10.018 ISSN 1878-0180

  • Leuridan S, Goossens Q, Pastrav LC, Mulier M, Desmet W, Vander Sloten J, Denis K (2021) Development of an instrument to assess the stability of cementless femoral implants using vibration analysis during total hip arthroplasty. IEEE J Trans Eng Health Med 9: 1–10 https://doi.org/10.1109/JTEHM.2021.3128276 ISSN 2168-2372

  • McCarthy CK, Steinberg GG, Agren M, Leahey D, Wyman E, Baran DT (1991) Quantifying bone loss from the proximal femur after total hip arthroplasty. J Bone Joint Surg 73 (5): 774–778 https://doi.org/10.1302/0301-620X.73B5.1894664 ISSN 0301-620X

  • Michel A, Nguyen V-H, Bosc R, Vayron R, Hernigou P, Naili S, Haiat G (2017) Finite element model of the impaction of a press-fitted acetabular cup. Med Biol Eng Comput 55 (5): 781–791 https://doi.org/10.1007/s11517-016-1545-2 ISSN 0140-0118, 1741-0444

  • Monea AG, Pastrav LC, Mulier M, Van der Perre G, Jaecques SV (2014) Numerical simulation of the insertion process of an uncemented hip prosthesis in order to evaluate the influence of residual stress and contact distribution on the stem initial stability. Comput Methods Biomech Biomed Eng 17 (3): 263–276 https://doi.org/10.1080/10255842.2012.681644 ISSN 1476-8259

  • Mulier M, Pastrav C, Van der Perre G (2008) Per-operative vibration analysis: a valuable tool for defining correct stem insertion: preliminary report. Ortop Traumatol Rehabil 10 (6): 576–582 ISSN 1509-3492

  • Nguyen V-H, Rosi G, Naili S, Michel A, Raffa M-L, Bosc R, Meningaud J-P, Chappard C, Takano N, Haiat G (2017) Influence of anisotropic bone properties on the biomechanical behavior of the acetabular cup implant: a multiscale finite element study. Comput Methods Biomech Biomed Eng 20 (12): 1312–1325 https://doi.org/10.1080/10255842.2017.1357703 ISSN 1025-5842, 1476-8259

  • Ovesy M, Voumard B, Zysset P (2018) A nonlinear homogenized finite element analysis of the primary stability of the bone-implant interface. Biomech Model Mechanobiol 17 (5): 1471–1480 https://doi.org/10.1007/s10237-018-1038-3 ISSN 1617-7940

  • Ovesy M, Aeschlimann M, Zysset PK (2020) Explicit finite element analysis can predict the mechanical response of conical implant press-fit in homogenized trabecular bone. J Biomech 107: 109844 https://doi.org/10.1016/j.jbiomech.2020.109844 ISSN 1873-2380

  • Pastrav LC, Devos J, Van der Perre G, Jaecques SVN (2009a) A finite element analysis of the vibrational behaviour of the intra-operatively manufactured prosthesis-femur system. Med Eng Phys 31 (4): 489–494 https://doi.org/10.1016/j.medengphy.2008.11.017 ISSN 1873-4030

  • Pastrav LC, Jaecques SV, Jonkers I, d. Perre GV, Mulier M (2009b) In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses. J Orthop Surg Res 4: 10 https://doi.org/10.1186/1749-799X-4-10 ISSN 1749-799X

  • Pettersen SH, Wik TS, Skallerud B (2009) Subject specific finite element analysis of implant stability for a cementless femoral stem. Clin Biomech 24 (6): 480–487 https://doi.org/10.1016/j.clinbiomech.2009.03.009 ISSN 0268-0033

  • Pivec R, Johnson AJ, Mears SC, Mont MA (2012) Hip arthroplasty. Lancet 380 (9855): 1768–1777 https://doi.org/10.1016/S0140-6736(12)60607-2 ISSN 1474-547X

  • Poudrel A-S, Rosi G, Nguyen V-H, Haiat G (2022) Modal analysis of the ancillary during femoral stem insertion: a study on bone mimicking phantoms. Ann Biomed Eng 50 (1): 16–28 https://doi.org/10.1007/s10439-021-02887-9 ISSN 1573-9686

  • Pérez MA, Seral-García B (2013) A finite element analysis of the vibration behaviour of a cementless hip system. Comput Methods Biomech Biomed Eng 16 (9): 1022–1031 https://doi.org/10.1080/10255842.2011.650635 ISSN 1476-8259

  • Raffa ML, Nguyen V-H, Haiat G (2019) Micromechanical modeling of the contact stiffness of an osseointegrated bone-implant interface. Biomed Eng Online 18(1):114. https://doi.org/10.1186/s12938-019-0733-3

    Article  Google Scholar 

  • Raffa ML, Nguyen V-H, Tabor E, Immel K, Housset V, Flouzat-Lachaniette C-H, Haiat G (2019) Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment. Proc Inst Mech Eng Part H J Eng Med 233 (12): 1237–1249 https://doi.org/10.1177/0954411919879250 ISSN 2041-3033

  • Raffa ML, Nguyen V-H, Hernigou P, Flouzat-Lachaniette C-H, Haiat G (2021) Stress shielding at the bone-implant interface: influence of surface roughness and of the bone-implant contact ratio. J Orthopaed Res Off Publ Orthopaed Res Soc 39(6):1174–1183. https://doi.org/10.1002/jor.24840

    Article  Google Scholar 

  • Reimeringer M, Nuño N (2016) The influence of contact ratio and its location on the primary stability of cementless total hip arthroplasty: A finite element analysis. J Biomech 49 (7): 1064–1070 https://doi.org/10.1016/j.jbiomech.2016.02.031 ISSN 0021-9290

  • Reimeringer M, Nuño N, Desmarais-Trépanier C, Lavigne M, Vendittoli PA (2013) The influence of uncemented femoral stem length and design on its primary stability: a finite element analysis. Comput Methods Biomech Biomed Eng 16 (11): 1221–1231 https://doi.org/10.1080/10255842.2012.662677 ISSN 1476-8259

  • Rothstock S, Uhlenbrock A, Bishop N, Morlock M (2010) Primary stability of uncemented femoral resurfacing implants for varying interface parameters and material formulations during walking and stair climbing. J Biomech 43 (3): 521–526 https://doi.org/10.1016/j.jbiomech.2009.09.052 ISSN 0021-9290

  • Russell RD, Huo MH, Rodrigues DC, Kosmopoulos V (2016) Stem geometry changes initial femoral fixation stability of a revised press-fit hip prosthesis: a finite element study. Technol Health Care Off J Eur Soc Eng Med 24 (6): 865–872 https://doi.org/10.3233/THC-161235 ISSN 1878-7401

  • Shirazi-Adl A, Dammak M, Paiement G (1993) Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants. J Biomed Mater Res 27 (2): 167–175 https://doi.org/10.1002/jbm.820270205 ISSN 0021-9304

  • Shultz TR, Blaha JD, Gruen TA, Norman TL (2006) Cortical bone viscoelasticity and fixation strength of press-fit femoral stems: finite element model. J Biomech Eng 128 (1): 7–12 https://doi.org/10.1115/1.2133765 ISSN 0148-0731

  • Sidler-Maier CC, Waddell JP (2015) Incidence and predisposing factors of periprosthetic proximal femoral fractures: a literature review. Int Orthop 39 (9): 1673–1682 https://doi.org/10.1007/s00264-015-2721-y ISSN 1432-5195

  • Sloan M, Premkumar A, Sheth NP (2018) Projected volume of primary total joint arthroplasty in the U.S., 2014 to 2030. J Bone Joint Surg Am 100 (17): 1455–1460 https://doi.org/10.2106/JBJS.17.01617 ISSN 1535-1386

  • Taylor M, Tanner KE, Freeman MA, Yettram AL (1995) Cancellous bone stresses surrounding the femoral component of a hip prosthesis: an elastic-plastic finite element analysis. Med Eng Phys 17 (7): 544–550 https://doi.org/10.1016/1350-4533(95)00018-i ISSN 1350-4533

  • Tijou A, Rosi G, Vayron R, Lomami HA, HernigouP, Flouzat-Lachaniette C-H, Haïat G (2018) Monitoring cementless femoral stem insertion by impact analyses: an in vitro study. J Mech Behav Biomed Mater 88: 102–108 https://doi.org/10.1016/j.jmbbm.2018.08.009 ISSN 17516161

  • Ulrich SD, Seyler TM, Bennett D, Delanois RE, Saleh KJ, Thongtrangan I, Kuskowski M, Cheng EY, Sharkey PF, Parvizi J, Stiehl JB, Mont MA (2008) Total hip arthroplasties: what are the reasons for revision?. Int Orthop 32 (5): 597–604 https://doi.org/10.1007/s00264-007-0364-3 ISSN 0341-2695

  • uncemented femoral stem. CERAFIT RMIS HAC, Ceraver, Sept. 2020. https://www.ceraver.com/cerafit-rmis-hac/

  • Wong AS, New AMR, Isaacs G, Taylor M (2005) Effect of bone material properties on the initial stability of a cementless hip stem: a finite element study. Proc Inst Mech Eng Part H J Eng Med 219 (4): 265–275 https://doi.org/10.1243/095441105X34293 ISSN 0954-4119

  • Wriggers P (2006) Computational Contact Mechanics. Springer

Download references

Acknowledgements

The authors would like to thank Victor Housset for his feedback on the finite element model’s geometry on the strength of its expertise as orthopedic surgeon.

Funding

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No 682001, project ERC Consolidator Grant 2015 BoneImplant), from the project OrthAncil (ANR-21-CE19-0035-03) and from the project OrthoMat (ANR-21-CE17-0004).

Author information

Authors and Affiliations

Authors

Contributions

GH, V-HN and GR conceived the study and were in charge of overall direction and planning. A-SP, and V-HN designed the model and the computational framework. A-SP performed the calculations. All authors participated to the analysis of the data. A-SP wrote the main manuscript text with inputs from all authors. All authors reviewed the manuscript.

Corresponding author

Correspondence to Guillaume Haiat.

Ethics declarations

Conflict of interest

The authors declare that they have no financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poudrel, AS., Nguyen, VH., Rosi, G. et al. Influence of the biomechanical environment on the femoral stem insertion and vibrational behavior: a 3-D finite element study. Biomech Model Mechanobiol 22, 611–628 (2023). https://doi.org/10.1007/s10237-022-01667-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-022-01667-1

Keywords

Navigation