Skip to main content

Advertisement

Log in

Computational homogenisation based extraction of transverse tensile cohesive responses of cortical bone tissue

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The numerical assessment of fracture properties of cortical bone is important in providing suggestions on patient-specific clinical treatments. We present a generic finite element modelling framework incorporating computational fracture approaches and computational homogenisation techniques. Finite element computations for statistical volume elements (SVEs) at the microscale are performed for different sizes with random osteon packing with a fixed volume fraction. These SVEs are loaded in the transverse direction under tension. The minimal SVE size in terms of ensuring a representative effective cohesive law is suggested to be 0.6 mm. Since cement lines as weak interfaces play a key role in bone fracture, the effects of their fracture properties on the effective fracture strength and toughness are investigated. The extracted effective fracture properties can be used as homogenised inputs to a discrete crack simulation at macroscopic or structural scale. The extrinsic toughening mechanisms observed in the SVE models are discussed with a comparison against experimental observations from the literature, giving beneficial insights to cortical bone failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The term SVE is preferred over representative volume element (RVE) which is more frequently used in the literature, since a volume element of finite size normally will not be truly representative, according to Ostoja-Starzewski (2006).

References

  • Abdel-Wahab AA, Maligno AR, Silberschmidt VV (2012) Micro-scale modelling of bovine cortical bone fracture: analysis of crack propagation and microstructure using X-FEM. Comput Mater Sci 52(1):128–135

    Article  Google Scholar 

  • Alfaro MC, Suiker A, Verhoosel C, De Borst R (2010) Numerical homogenization of cracking processes in thin fibre-epoxy layers. Eur J Mech A Solids 29(2):119–131

    Article  MATH  Google Scholar 

  • Anderson TL (2017) Fracture mechanics: fundamentals and applications. CRC Press, New York

    Book  MATH  Google Scholar 

  • Ballard MK, Whitcomb JD (2017) Effective use of cohesive zone-based models for the prediction of progressive damage at the fiber/matrix scale. J Compos Mater 51(5):649–669

    Article  Google Scholar 

  • Bernhard A, Milovanovic P, Zimmermann E, Hahn M, Djonic D, Krause M, Breer S, Püschel K, Djuric M, Amling M et al (2013) Micro-morphological properties of osteons reveal changes in cortical bone stability during aging, osteoporosis, and bisphosphonate treatment in women. Osteoporos Int 24(10):2671–2680

    Article  Google Scholar 

  • Bigley RF, Griffin LV, Christensen L, Vandenbosch R (2006) Osteon interfacial strength and histomorphometry of equine cortical bone. J Biomech 39(9):1629–1640

    Article  Google Scholar 

  • Budyn É, Hoc T (2007) Multiple scale modeling for cortical bone fracture in tension using X-FEM. Eur J Comput Mech Revue Européenne de Mécanique Numérique 16(2):213–236

    Article  MATH  Google Scholar 

  • Budyn E, Hoc T (2010) Analysis of micro fracture in human Haversian cortical bone under transverse tension using extended physical imaging. Int J Numer Meth Eng 82(8):940–965

    Article  MATH  Google Scholar 

  • Budyn E, Hoc T, Jonvaux J (2008) Fracture strength assessment and aging signs detection in human cortical bone using an X-FEM multiple scale approach. Comput Mech 42(4):579–591

    Article  MATH  Google Scholar 

  • Burr DB (2019) Changes in bone matrix properties with aging. Bone 120:85–93

    Article  Google Scholar 

  • Burr DB, Schaffler MB, Frederickson RG (1988) Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J Biomech 21(11):939–945

    Article  Google Scholar 

  • Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20–22):2899–2938

    Article  MATH  Google Scholar 

  • Camanho PP, Davila CG, De Moura M (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37(16):1415–1438

    Article  Google Scholar 

  • Cid Alfaro M, Suiker A, De Borst R (2010) Transverse failure behavior of fiber-epoxy systems. J Compos Mater 44(12):1493–1516

    Article  Google Scholar 

  • Currey JD (1979) Mechanical properties of bone tissues with greatly differing functions. J Biomech 12(4):313–319

    Article  Google Scholar 

  • Evans AG (1990) Perspective on the development of high-toughness ceramics. J Am Ceram Soc 73(2):187–206

    Article  Google Scholar 

  • Falk ML, Needleman A, Rice JR (2001) A critical evaluation of cohesive zone models of dynamic fractur. Le Journal de Physique IV:11(PR5):Pr5-43

    Google Scholar 

  • Fan J, Tadmor EB (2019) Rescaling cohesive element properties for mesh independent fracture simulations. Eng Fract Mech 213:89–99

    Article  Google Scholar 

  • Fletcher L, Codrington J, Parkinson I (2014) Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone. J Mater Sci Mater Med 25(7):1661–1670

    Article  Google Scholar 

  • Gauthier R, Follet H, Olivier C, Mitton D, Peyrin F (2019) 3D analysis of the osteonal and interstitial tissue in human radii cortical bone. Bone 127:526–536

    Article  Google Scholar 

  • Geers MG, Kouznetsova VG, Brekelmans W (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234(7):2175–2182

    Article  MATH  Google Scholar 

  • Giner E, Belda R, Arango C, Vercher-Martínez A, Tarancón JE, Fuenmayor FJ (2017) Calculation of the critical energy release rate GC of the cement line in cortical bone combining experimental tests and finite element models. Eng Fract Mech 184:168–182

    Article  Google Scholar 

  • Gitman I, Askes H, Sluys L (2007) Representative volume: existence and size determination. Eng Fract Mech 74(16):2518–2534

    Article  Google Scholar 

  • Goldmann J, Brummund J, Ulbricht V (2018) On boundary conditions for homogenization of volume elements undergoing localization. Int J Numer Meth Eng 113(1):1–21

    Article  MathSciNet  Google Scholar 

  • Gustafsson A, Khayyeri H, Wallin M, Isaksson H (2019a) An interface damage model that captures crack propagation at the microscale in cortical bone using XFEM. J Mech Behav Biomed Mater 90:556–565

    Article  Google Scholar 

  • Gustafsson A, Wallin M, Isaksson H (2019b) Age-related properties at the microscale affect crack propagation in cortical bone. J Biomech 95:109326

    Article  Google Scholar 

  • Gustafsson A, Wallin M, Khayyeri H, Isaksson H (2019c) Crack propagation in cortical bone is affected by the characteristics of the cement line: a parameter study using an XFEM interface damage model. Biomech Model Mechanobiol 18(4):1247–1261

    Article  Google Scholar 

  • Hamdia KM, Silani M, Zhuang X, He P, Rabczuk T (2017) Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. Int J Fract 206(2):215–227

    Article  Google Scholar 

  • Hashin Z (1983) Analysis of composite materials: a survey. J Appl Mech 50(3):481–505

    Article  MATH  Google Scholar 

  • Hernandez C, Keaveny T (2006) A biomechanical perspective on bone quality. Bone 39(6):1173–1181

    Article  Google Scholar 

  • Hogan HA (1992) Micromechanics modeling of Haversian cortical bone properties. J Biomech 25(5):549–556

    Article  Google Scholar 

  • Idkaidek A, Jasiuk I (2017) Cortical bone fracture analysis using XFEM-case study. Int J Numer Methods Biomed Eng 33(4):e2809

    Article  Google Scholar 

  • Jonvaux J, Hoc T, Budyn E (2012) Analysis of micro fracture in human Haversian cortical bone under compression. Int J Numer Methods Biomed Eng 28(9):974–998

    Article  MathSciNet  Google Scholar 

  • Katsamenis OL, Jenkins T, Thurner PJ (2015) Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level. Bone 76:158–168

    Article  Google Scholar 

  • Koester KJ, Ager Iii J, Ritchie R (2008) The true toughness of human cortical bone measured with realistically short cracks. Nat Mater 7(8):672

    Article  Google Scholar 

  • Larsson F, Runesson K, Saroukhani S, Vafadari R (2011) Computational homogenization based on a weak format of micro-periodicity for nerve-problems. Comput Methods Appl Mech Eng 200(1–4):11–26

    Article  MATH  Google Scholar 

  • Launey ME, Buehler MJ, Ritchie RO (2010) On the mechanistic origins of toughness in bone. Annu Rev Mater Res 40:25–53

    Article  Google Scholar 

  • Li S, Abdel-Wahab A, Demirci E, Silberschmidt VV (2014) Fracture process in cortical bone: X-FEM analysis of microstructured models. Fracture phenomena in nature and technology. Springer, New York, pp 43–55

    Google Scholar 

  • Lin ZX, Xu Z-H, An YH, Li X (2016) In situ observation of fracture behavior of canine cortical bone under bending. Mater Sci Eng C 62:361–367

    Article  Google Scholar 

  • Lloberas-Valls O, Rixen D, Simone A, Sluys L (2012) Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials. Int J Numer Meth Eng 89(11):1337–1366

    Article  MathSciNet  MATH  Google Scholar 

  • Low I, Che Z, Latella B (2006) Mapping the structure, composition and mechanical properties of bamboo. J Mater Res 21(8):1969–1976

    Article  Google Scholar 

  • Malik C, Stover S, Martin R, Gibeling J (2003) Equine cortical bone exhibits rising r-curve fracture mechanics. J Biomech 36(2):191–198

    Article  Google Scholar 

  • Marco M, Belda R, Miguélez MH, Giner E (2018) A heterogeneous orientation criterion for crack modelling in cortical bone using a phantom-node approach. Finite Elem Anal Des 146:107–117

    Article  Google Scholar 

  • Massart T, Peerlings R, Geers M (2007) An enhanced multi-scale approach for masonry wall computations with localization of damage. Int J Numer Methods Eng 69(5):1022–1059

    Article  MATH  Google Scholar 

  • Matouš K, Geers MG, Kouznetsova VG, Gillman A (2017) A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J Comput Phys 330:192–220

    Article  MathSciNet  Google Scholar 

  • Matouš K, Kulkarni MG, Geubelle PH (2008) Multiscale cohesive failure modeling of heterogeneous adhesives. J Mech Phys Solids 56(4):1511–1533

    Article  MathSciNet  MATH  Google Scholar 

  • Miehe C, Schröder J, Becker M (2002) Computational homogenization analysis in finite elasticity: material and structural instabilities on the micro-and macro-scales of periodic composites and their interaction. Comput Methods Appl Mech Eng 191(44):4971–5005

    Article  MathSciNet  MATH  Google Scholar 

  • Mirkhalaf S, Pires FA, Simoes R (2016) Determination of the size of the representative volume element (RVE) for the simulation of heterogeneous polymers at finite strains. Finite Elem Anal Des 119:30–44

    Article  Google Scholar 

  • Mischinski S, Ural A (2013) Interaction of microstructure and microcrack growth in cortical bone: a finite element study. Comput Methods Biomech Biomed Eng 16(1):81–94

    Article  Google Scholar 

  • Morits M, Verho T, Sorvari J, Liljeström V, Kostiainen MA, Gröschel AH, Ikkala O (2017) Toughness and fracture properties in nacre-mimetic clay/polymer nanocomposites. Adv Funct Mater 27(10):1605378

    Article  Google Scholar 

  • Msekh MA, Cuong N, Zi G, Areias P, Zhuang X, Rabczuk T (2018) Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Eng Fract Mech 188:287–299

    Article  Google Scholar 

  • Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Tough, bio-inspired hybrid materials. Science 322(5907):1516–1520

    Article  Google Scholar 

  • Nalla RK, Kinney JH, Ritchie RO (2003) Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater 2(3):164–168

    Article  Google Scholar 

  • Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO (2005) Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomaterials 26(2):217–231

    Article  Google Scholar 

  • Needleman A (1987) A continuum model for void nucleation by inclusion debonding

  • Nguyen N, Waas AM (2016) A novel mixed-mode cohesive formulation for crack growth analysis. Compos Struct 156:253–262

    Article  Google Scholar 

  • Nguyen V-D, Béchet E, Geuzaine C, Noels L (2012a) Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Comput Mater Sci 55:390–406

    Article  Google Scholar 

  • Nguyen VP (2014) An open source program to generate zero-thickness cohesive interface elements. Adv Eng Softw 74:27–39

    Article  Google Scholar 

  • Nguyen VP, Lloberas-Valls O, Stroeven M, Sluys LJ (2011) Homogenization-based multiscale crack modelling: from micro-diffusive damage to macro-cracks. Comput Methods Appl Mech Eng 200(9–12):1220–1236

    Article  MATH  Google Scholar 

  • Nguyen VP, Stroeven M, Sluys LJ (2012b) Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations. Comput Methods Appl Mech Eng 201:139–156

    Article  MathSciNet  MATH  Google Scholar 

  • Ostoja-Starzewski M (2006) Material spatial randomness: from statistical to representative volume element. Probab Eng Mech 21(2):112–132

    Article  Google Scholar 

  • O’Brien FJ, Taylor D, Lee TC (2007) Bone as a composite material: the role of osteons as barriers to crack growth in compact bone. Int J Fatigue 29(6): 1051–1056

  • Park K, Paulino GH, Roesler JR (2009) A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 57(6):891–908

    Article  Google Scholar 

  • Parmigiani J, Thouless M (2006) The roles of toughness and cohesive strength on crack deflection at interfaces. J Mech Phys Solids 54(2):266–287

    Article  MATH  Google Scholar 

  • Peterlik H, Roschger P, Klaushofer K, Fratzl P (2006) From brittle to ductile fracture of bone. Nat Mater 5(1):52

    Article  MATH  Google Scholar 

  • Petracca M, Pelà L, Rossi R, Oller S, Camata G, Spacone E (2016) Regularization of first order computational homogenization for multiscale analysis of masonry structures. Comput Mech 57(2):257–276

    Article  MathSciNet  MATH  Google Scholar 

  • Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8(6):393–405

    Article  Google Scholar 

  • Rho J, Zioupos P, Currey J, Pharr G (1999) Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25(3):295–300

    Article  Google Scholar 

  • Rho J-Y, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20(2):92–102

    Article  Google Scholar 

  • Ritchie RO (2010) How does human bone resist fracture? Ann N Y Acad Sci 1192(1):72–80

    Article  Google Scholar 

  • Ritchie RO, Kinney JH, Kruzic JJ, Nalla RK (2005) A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue Fract Eng Mater Struct 28(4):345–371

    Article  Google Scholar 

  • Schellekens J, De Borst R (1993) On the numerical integration of interface elements. Int J Numer Meth Eng 36(1):43–66

    Article  MATH  Google Scholar 

  • Shao Y, Zhao H-P, Feng X-Q, Gao H (2012) Discontinuous crack-bridging model for fracture toughness analysis of nacre. J Mech Phys Solids 60(8):1400–1419

    Article  MathSciNet  Google Scholar 

  • Skedros JG, Holmes JL, Vajda EG, Bloebaum RD (2005) Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective. Anatom Rec A Discov Mol Cell Evolut Biol Off Publ Am Assoc Anatom 286(1):781–803

    Google Scholar 

  • Souza FV, Allen DH (2011) Modeling the transition of microcracks into macrocracks in heterogeneous viscoelastic media using a two-way coupled multiscale model. Int J Solids Struct 48(22–23):3160–3175

    Article  Google Scholar 

  • Svenning E, Fagerström M, Larsson F (2016) On computational homogenization of microscale crack propagation. Int J Numer Meth Eng 108(1):76–90

    Article  MathSciNet  MATH  Google Scholar 

  • Svenning E, Larsson F, Fagerström M (2017) Two-scale modeling of fracturing solids using a smeared macro-to-micro discontinuity transition. Comput Mech 60(4):627–641

    Article  MathSciNet  MATH  Google Scholar 

  • Talebi H, Silani M, Bordas SP, Kerfriden P, Rabczuk T (2014) A computational library for multiscale modeling of material failure. Comput Mech 53(5):1047–1071

    Article  MathSciNet  Google Scholar 

  • Tang T, Ebacher V, Cripton P, Guy P, McKay H, Wang R (2015) Shear deformation and fracture of human cortical bone. Bone 71:25–35

    Article  Google Scholar 

  • Toro S, Sánchez PJ, Blanco PJ, de Souza Neto E, Huespe AE, Feijóo R (2016) Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales. Int J Plast 76:75–110

    Article  Google Scholar 

  • Turon A, Camanho PP, Costa J, Dávila C (2006) A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 38(11):1072–1089

    Article  Google Scholar 

  • Turon A, Davila CG, Camanho PP, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74(10):1665–1682

    Article  Google Scholar 

  • Turteltaub S, van Hoorn N, Westbroek W, Hirsch C (2018) Multiscale analysis of mixed-mode fracture and effective traction-separation relations for composite materials. J Mech Phys Solids 117:88–109

    Article  MathSciNet  Google Scholar 

  • Ural A (2011) Cohesive modeling of bone fracture at multiple scales. Proc Eng 10:2827–2832

    Article  Google Scholar 

  • Ural A, Mischinski S (2013) Multiscale modeling of bone fracture using cohesive finite elements. Eng Fract Mech 103:141–152

    Article  Google Scholar 

  • Ural A, Vashishth D (2006) Cohesive finite element modeling of age-related toughness loss in human cortical bone. J Biomech 39(16):2974–2982

    Article  Google Scholar 

  • Vashishth D (2004) Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements. J Biomech 37(6):943–946

    Article  Google Scholar 

  • Vashishth D, Tanner K, Bonfield W (2000) Contribution, development and morphology of microcracking in cortical bone during crack propagation. J Biomech 33(9):1169–1174

    Article  Google Scholar 

  • Vergani L, Colombo C, Libonati F (2014) Crack propagation in cortical bone: a numerical study. Proc Mater Sci 3:1524–1529

    Article  Google Scholar 

  • Verhoosel CV, Remmers JJ, Gutiérrez MA, De Borst R (2010) Computational homogenization for adhesive and cohesive failure in quasi-brittle solids. Int J Numer Meth Eng 83(8–9):1155–1179

    Article  MATH  Google Scholar 

  • Wang M, Li S, vom Scheidt A, Qwamizadeh M, Busse B, Silberschmidt VV (2020) Numerical study of crack initiation and growth in human cortical bone: effect of micro-morphology. Eng Fract Mech 232:107051

    Article  Google Scholar 

  • Wang M, Zimmermann EA, Riedel C, Busse B, Li S, Silberschmidt VV (2017) Effect of micro-morphology of cortical bone tissue on fracture toughness and crack propagation. Proc Struct Integ 6:64–68

    Google Scholar 

  • Xie D, Waas AM (2006) Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng Fract Mech 73(13):1783–1796

    Article  Google Scholar 

  • Xing W, Miller AD (2021) A multiscale failure modelling framework for strain localisation in quasi-brittle materials. Int J Comput Methods

  • Yang Q, Cox B, Nalla R, Ritchie R (2006a) Re-evaluating the toughness of human cortical bone. Bone 38(6):878–887

    Article  Google Scholar 

  • Yang Q, Cox BN, Nalla RK, Ritchie R (2006b) Fracture length scales in human cortical bone: the necessity of nonlinear fracture models. Biomaterials 27(9):2095–2113

    Article  Google Scholar 

  • Yeni YN, Norman TL (2000) Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth. J Biomed Mater Res Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 51(3):504–509

    Google Scholar 

  • Zimmermann EA, Busse B, Ritchie RO (2015) The fracture mechanics of human bone: influence of disease and treatment. BoneKEy Rep 4:743

    Article  Google Scholar 

  • Zimmermann EA, Launey ME, Ritchie RO (2010) The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone. Biomaterials 31(20):5297–5305

    Article  Google Scholar 

  • Zioupos P (1998) Recent developments in the study of failure of solid biomaterials and bone: fracture and pre-fracture toughness. Mater Sci Eng C 6(1):33–40

    Article  Google Scholar 

  • Zioupos P, Currey J (1998) Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22(1):57–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjin Xing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Hill-Mandel condition for WPBCs

This section aims to prove that the WPBCs respect the Hill-Mandel condition. According to the first-order CH, the microscale displacement field is given as

$$\begin{aligned} {\mathbf {u}} = {\mathbf {u}}_{\textsc {M}}+\tilde{{\mathbf {u}}}= \varvec{\varepsilon }_{\textsc {M}}\cdot {\mathbf {x}}+\tilde{{\mathbf {u}}}\;, \end{aligned}$$
(8)

where \({\mathbf {u}}_{\textsc {M}}\) and \(\tilde{{\mathbf {u}}}\) represent the uniform deformation corresponding to the prescribed macroscale strain \(\varvec{\varepsilon }_{\textsc {M}}\), and the displacement fluctuations induced by the microstructure, respectively.

The WPBCs can be regarded in an integral sense as a weak implementation of the strong PBCs that are applied pointwise. In the weak setting, the WPBCs can be expressed as (Larsson et al. 2011)

$$\begin{aligned} \int _{\Gamma ^+} \delta {\mathbf {t}}_\lambda \cdot \llbracket \tilde{{\mathbf {u}}}\rrbracket _{\Gamma } \,{\mathrm {d}}\Gamma = {\mathbf {0}} \;, \end{aligned}$$
(9)

where \(\delta {\mathbf {t}}_\lambda\) can be regarded as a test function and interpreted as the weighted boundary traction vector which is unknown at the moment. The proof is given as follows:

$$\begin{aligned} \begin{aligned} \langle \varvec{\sigma } : \delta \varvec{\varepsilon } \rangle&=\frac{1}{|\varOmega |} \left( \int _{\varOmega } \varvec{\sigma } : \delta \nabla {\mathbf {u}}_{\textsc {M}}\,{\mathrm {d}}\varOmega + \int _{\varOmega } \varvec{\sigma } : \delta \nabla \tilde{{\mathbf {u}}} \,{\mathrm {d}}\varOmega \right) \\&=\frac{1}{|\varOmega |} \int _{\varOmega } \varvec{\sigma } : \delta \nabla {\mathbf {u}}_{\textsc {M}}\,{\mathrm {d}}\varOmega + \frac{1}{|\varOmega |} \int _{\Gamma } {\mathbf {t}} \cdot \delta \tilde{{\mathbf {u}}} \,{\mathrm {d}}\Gamma \\&=\varvec{\sigma }_{\textsc {M}}: \delta \varvec{\varepsilon }_{\textsc {M}}+ \frac{1}{|\varOmega |} \int _{\Gamma ^+} {\mathbf {t}} \cdot \delta \llbracket \tilde{{\mathbf {u}}} \rrbracket _{\Gamma } \,{\mathrm {d}}\Gamma \\&=\varvec{\sigma }_{\textsc {M}}: \delta \varvec{\varepsilon }_{\textsc {M}}\;, \end{aligned} \end{aligned}$$
(10)

where the equilibrium equation of SVE, the divergence theorem, the anti-periodicity of boundary tractions and Eq. (9) have been used in sequence. The WPBCs can be implemented in the context of FE by means of introducing Lagrange multipliers into the system. In the case of the multiscale crack model using an extended CH and WPBCs, the energetic equivalence across two scales has been demonstrated in (Xing and Miller 2021).

Appendix B: Comparison with a clay/epoxy nanocomposite fracture study

In the work by Msekh et al. (2018), the authors predicted fracture properties of clay/epoxy nanocomposites with interphase zones using a phase field model for fracture. The simulated nanocomposite system shares similarities to the system in this contribution. For example, inclusions (clay platelets and osteons) are stiffer than the matrix (epoxy and interstitial matrix), and both the matrix cracking and interface debonding are considered without failure in the inclusions. On the other hand, the authors used the concurrent multiscale method as compared to the semi-concurrent multiscale method herein. Some interesting findings in (Msekh et al. 2018) were (i) the overall tensile strength increased with decreasing interface thickness in the case of weaker interface compared to the matrix; (ii) The global energy release rate was significantly increased by increasing the critical fracture energy of the interface; (iii) The fracture energy of the interface did not affect the nanocomposite’s tensile strength. Meanwhile, the dissipation energy due to fracture was increased drastically with an interface rather than the fully bonded nanocomposite. Our results match their points (ii) and (iii), both of which emphasise the important role of the weak interface. However, we cannot replicate their point (i), because the interface around osteons is simulated with interface elements assuming a zero thickness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, W., Miller, T. & Wildy, S. Computational homogenisation based extraction of transverse tensile cohesive responses of cortical bone tissue. Biomech Model Mechanobiol 21, 147–161 (2022). https://doi.org/10.1007/s10237-021-01524-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-021-01524-7

Keywords

Navigation