Skip to main content
Log in

Computational models of cancer cell transport through the microcirculation

  • Review Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The transport of cancerous cells through the microcirculation during metastatic spread encompasses several interdependent steps that are not fully understood. Computational models which resolve the cellular-scale dynamics of complex microcirculatory flows offer considerable potential to yield needed insights into the spread of cancer as a result of the level of detail that can be captured. In recent years, in silico methods have been developed that can accurately and efficiently model the circulatory flows of cancer and other biological cells. These computational methods are capable of resolving detailed fluid flow fields which transport cells through tortuous physiological geometries, as well as the deformation and interactions between cells, cell-to-endothelium interactions, and tumor cell aggregates, all of which play important roles in metastatic spread. Such models can provide a powerful complement to experimental works, and a promising approach to recapitulating the endogenous setting while maintaining control over parameters such as shear rate, cell deformability, and the strength of adhesive binding to better understand tumor cell transport. In this review, we present an overview of computational models that have been developed for modeling cancer cells in the microcirculation, including insights they have provided into cell transport phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abkarian M, Lartigue C, Viallat A (2002) Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Phys Rev Lett 88(6):068103

    Article  Google Scholar 

  • Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5):1110–1122

    Article  Google Scholar 

  • Aghaamoo M, Zhang Z, Chen X, Xu J (2015) Deformability-based circulating tumor cell separation with conical-shaped microfilters: Concept, optimization, and design criteria. Biomicrofluidics 9(3):034106

    Article  Google Scholar 

  • Agresar G, Linderman J, Tryggvason G, Powell K (1998) An adaptive, cartesian, front-tracking method for the motion, deformation and adhesion of circulating cells. J Comput Phys 143(2):346–380

    Article  MathSciNet  MATH  Google Scholar 

  • Aigner S, Ramos CL, Hafezi-Moghadam A, Lawrence MB, Friederichs J, Altevogt P, Ley K (1998) Cd24 mediates rolling of breast carcinoma cells on p-selectin. FASEB J 12(12):1241–1251

    Article  Google Scholar 

  • Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10(20):6897–6904

    Article  Google Scholar 

  • Ames J, Puleri DF, Balogh P, Gounley J, Draeger EW, Randles A (2020) Multi-gpu immersed boundary method hemodynamics simulations. J Comput Sci 44:101153

    Article  MathSciNet  Google Scholar 

  • Anderson KJ, de Guillebon A, Hughes AD, Wang W, King MR (2017) Effect of circulating tumor cell aggregate configuration on hemodynamic transport and wall contact. Mathe Biosci 294:181–194

    Article  MathSciNet  MATH  Google Scholar 

  • Au SH, Storey BD, Moore JC, Tang Q, Chen YL, Javaid S, Sarioglu AF, Sullivan R, Madden MW, O’Keefe R et al (2016) Clusters of circulating tumor cells traverse capillary-sized vessels. Proc National Academy Sci 113(18):4947–4952

    Article  Google Scholar 

  • Balogh P, Bagchi P (2017a) A computational approach to modeling cellular-scale blood flow in complex geometry. J Comput Phys 334:280–307

    Article  MathSciNet  Google Scholar 

  • Balogh P, Bagchi P (2017b) Direct numerical simulation of cellular-scale blood flow in 3d microvascular networks. Biophys J 113(12):2815–2826

    Article  Google Scholar 

  • Balogh P, Bagchi P (2018) Analysis of red blood cell partitioning at bifurcations in simulated microvascular networks. Phys Fluids 30(5):051902

    Article  Google Scholar 

  • Balogh P, Bagchi P (2019) Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks. Phys Rep 7(9):e14067

    Google Scholar 

  • Balzer EM, Tong Z, Paul CD, Hung WC, Stroka KM, Boggs AE, Martin SS, Konstantopoulos K (2012) Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J 26(10):4045–4056

    Article  Google Scholar 

  • Barber J, Zhu L (2019) Two-dimensional finite element model of breast cancer cell motion through a microfluidic channel. Bull Math Biol 81(4):1238–1259

    Article  MathSciNet  MATH  Google Scholar 

  • Barthes-Biesel D (2016) Motion and deformation of elastic capsules and vesicles in flow. Ann Rev Fluid Mech 48:25–52

    Article  MathSciNet  MATH  Google Scholar 

  • Barthes-Biesel D, Diaz A, Dhenin E (2002) Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. J Fluid Mech 460:211–222

    Article  MATH  Google Scholar 

  • Behr J, Gaskin B, Fu C, Dong C, Kunz R (2015) Localized modeling of biochemical and flow interactions during cancer cell adhesion. PloS one 10(9):e0136926

    Article  Google Scholar 

  • Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618–627

    Article  Google Scholar 

  • Bhalla APS, Bale R, Griffith BE, Patankar NA (2013) A unified mathematical framework and an adaptive numerical method for fluid-structure interaction with rigid, deforming, and elastic bodies. J Comput Phys 250:446–476

    Article  MathSciNet  MATH  Google Scholar 

  • Bidard FC, Peeters DJ, Fehm T, Nolé F, Gisbert-Criado R, Mavroudis D, Grisanti S, Generali D, Garcia-Saenz JA, Stebbing J et al (2014) Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol 15(4):406–414

    Article  Google Scholar 

  • Boedec G, Leonetti M, Jaeger M (2017) Isogeometric fem-bem simulations of drop, capsule and vesicle dynamics in stokes flow. J Comput Phys 342:117–138

    Article  MathSciNet  MATH  Google Scholar 

  • Burdick MM, McCarty OJ, Jadhav S, Konstantopoulos K (2001) Cell-cell interactions in inflammation and cancer metastasis. Ieee Eng Med Biol Mag 20(3):86–91

    Article  Google Scholar 

  • Byun S, Hecht VC, Manalis SR (2015) Characterizing cellular biophysical responses to stress by relating density, deformability, and size. Biophys J 109(8):1565–1573

    Article  Google Scholar 

  • Caille N, Thoumine O, Tardy Y, Meister JJ (2002) Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech 35(2):177–187

    Article  Google Scholar 

  • Cantat I, Misbah C (1999) Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys Rev Lett 83(4):880

    Article  Google Scholar 

  • Casquero H, Bona-Casas C, Gomez H (2017) Nurbs-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow. Comput Methods Appl Mech Eng 316:646–667

    Article  MathSciNet  MATH  Google Scholar 

  • Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564

    Article  Google Scholar 

  • Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572

    Article  Google Scholar 

  • Charrier J, Shrivastava S, Wu R (1989) Free and constrained inflation of elastic membranes in relation to thermoforming-non-axisymmetric problems. J Strain Anal Eng Design 24(2):55–74

    Article  Google Scholar 

  • Chen MB, Whisler JA, Fröse J, Yu C, Shin Y, Kamm RD (2017) On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat Protocols 12(5):865–880

    Article  Google Scholar 

  • Chen SH, Dallas MR, Balzer EM, Konstantopoulos K (2012) Mucin 16 is a functional selectin ligand on pancreatic cancer cells. FASEB J 26(3):1349–1359

    Article  Google Scholar 

  • Chen X, Gole J, Gore A, He Q, Lu M, Min J, Yuan Z, Yang X, Jiang Y, Zhang T et al (2020) Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat Commun 11(1):1–10

    Google Scholar 

  • Cheung LSL, Raman PS, Balzer EM, Wirtz D, Konstantopoulos K (2011) Biophysics of selectin-ligand interactions in inflammation and cancer. Physl Biol 8(1):015013

    Article  Google Scholar 

  • Coupier G, Kaoui B, Podgorski T, Misbah C (2008) Noninertial lateral migration of vesicles in bounded poiseuille flow. Phys Fluids 20(11):111702

    Article  MATH  Google Scholar 

  • Cui J, Liu Y, Xiao L, Chen S, Fu BM (2020) Numerical study on the adhesion of a circulating tumor cell in a curved microvessel. Biomech Model Mechanobiol 20:1–12

    Google Scholar 

  • Dabagh M, Randles A (2019) Role of deformable cancer cells on wall shear stress-associated-vegf secretion by endothelium in microvasculature. PloS one 14(2):e0211418

    Article  Google Scholar 

  • Dabagh M, Gounley J, Randles A (2020) Localization of rolling and firm-adhesive interactions between circulating tumor cells and the microvasculature wall. Cell Mol Bioeng 13:1–14

    Article  Google Scholar 

  • Dao M, Li J, Suresh S (2006) Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater Sci Eng: C 26(8):1232–1244

    Article  Google Scholar 

  • Dembo M, Torney D, Saxman K, Hammer D (1988) The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc Royal Soc London Series B Biol Sci 234(1274):55–83

    Google Scholar 

  • Denais CM, Gilbert RM, Isermann P, McGregor AL, Te Lindert M, Weigelin B, Davidson PM, Friedl P, Wolf K, Lammerding J (2016) Nuclear envelope rupture and repair during cancer cell migration. Science 352(6283):353–358

    Article  Google Scholar 

  • Doddi SK, Bagchi P (2008) Lateral migration of a capsule in a plane poiseuille flow in a channel. Int J Multiph Flow 34(10):966–986

    Article  Google Scholar 

  • Ebrahimi S, Balogh P, Bagchi P (2021) Motion of a capsule in a curved tube. J Fluid Mech 907:603

    Article  MathSciNet  MATH  Google Scholar 

  • Eggleton CD, Popel AS (1998) Large deformation of red blood cell ghosts in a simple shear flow. Phys Fluids 10(8):1834–1845

    Article  Google Scholar 

  • Fedosov DA, Caswell B, Karniadakis GE (2010) Systematic coarse-graining of spectrin-level red blood cell models. Comput Methods Appl Mech Eng 199(29–32):1937–1948

    Article  MathSciNet  MATH  Google Scholar 

  • Fedosov DA, Caswell B, Karniadakis GE (2011) Wall shear stress-based model for adhesive dynamics of red blood cells in malaria. Biophys j 100(9):2084–2093

    Article  Google Scholar 

  • Fedosov DA, Fornleitner J, Gompper G (2012) Margination of white blood cells in microcapillary flow. Phys Rev Lett 108(2):028104

    Article  Google Scholar 

  • Follain G, Herrmann D, Harlepp S, Hyenne V, Osmani N, Warren SC, Timpson P, Goetz JG (2019) Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer 20:1–18

    Google Scholar 

  • Freund JB (2007) Leukocyte margination in a model microvessel. Phys Fluids 19(2):023301

    Article  MATH  Google Scholar 

  • Freund JB (2013) The flow of red blood cells through a narrow spleen-like slit. Phys Fluids 25(11):110807

    Article  Google Scholar 

  • Freund JB (2014) Numerical simulation of flowing blood cells. Ann Rev Fluid Mech 46:67–95

    Article  MathSciNet  MATH  Google Scholar 

  • Fung Y (1996) Biomechanics: circulation. Springer, New York

    Google Scholar 

  • Ghaffari H, Saidi MS, Firoozabadi B (2017) Biomechanical analysis of actin cytoskeleton function based on a spring network cell model. Proc Inst Mech Eng, Part C: J Mech Eng Sci 231(7):1308–1323

    Article  Google Scholar 

  • Götte M, Mohr C, Koo C, Stock C, Vaske A, Viola M, Ibrahim S, Peddibhotla S, Teng YH, Low J et al (2010) mir-145-dependent targeting of junctional adhesion molecule a and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene 29(50):6569–6580

    Article  Google Scholar 

  • Gounley J, Draeger EW, Randles A (2017) Numerical simulation of a compound capsule in a constricted microchannel. Proced Comput Sci 108:175–184

    Article  Google Scholar 

  • Gounley J, Draeger EW, Randles A (2019) Immersed boundary method halo exchange in a hemodynamics application. In: International Conference on Computational Science, Springer, New York

  • Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2):325–348

    Article  MathSciNet  MATH  Google Scholar 

  • Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435

    Article  Google Scholar 

  • Guckenberger A, Gekle S (2017) Theory and algorithms to compute helfrich bending forces: a review. J Phys: Condensed Matter 29(20):203001

    Google Scholar 

  • Hammer DA (2014) Adhesive dynamics. J Biomech Eng 136(2):021006

    Article  Google Scholar 

  • Hammer DA, Apte SM (1992) Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J 63(1):35–57

    Article  Google Scholar 

  • Hashem MA, Aghilinejad A, Chen X, Tan H (2020) Compound droplet modeling for circulating tumor cell microfiltration with adaptive meshing refinement. J Fluids Eng 142(11):287

    Article  Google Scholar 

  • Heidemann SR, Wirtz D (2004) Towards a regional approach to cell mechanics. Trends Cell Biol 14(4):160–166

    Article  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C 28(11–12):693–703

    Article  Google Scholar 

  • Holle AW, Kalafat M, Ramos AS, Seufferlein T, Kemkemer R, Spatz JP (2017) Intermediate filament reorganization dynamically influences cancer cell alignment and migration. Sci Rep 7(1):1–14

    Article  Google Scholar 

  • Hoogerbrugge P, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhys Lett) 19(3):155

    Article  Google Scholar 

  • Hung WC, Chen SH, Paul CD, Stroka KM, Lo YC, Yang JT, Konstantopoulos K (2013) Distinct signaling mechanisms regulate migration in unconfined versus confined spaces. J Cell Biol 202(5):807–824

    Article  Google Scholar 

  • Jadhav S, Eggleton CD, Konstantopoulos K (2005) A 3-d computational model predicts that cell deformation affects selectin-mediated leukocyte rolling. Biophys J 88(1):96–104

    Article  Google Scholar 

  • Johann DJ Jr, Steliga M, Shin IJ, Yoon D, Arnaoutakis K, Hutchins L, Liu M, Liem J, Walker K, Pereira A et al (2018) Liquid biopsy and its role in an advanced clinical trial for lung cancer. Exp Biol Med 243(3):262–271

    Article  Google Scholar 

  • Kalluri R, Weinberg RA et al (2009) The basics of epithelial-mesenchymal transition. J Clin Investigation 119(6):1420–1428

    Article  Google Scholar 

  • Kan HC, Udaykumar H, Shyy W, Tran-Son-Tay R (1998) Hydrodynamics of a compound drop with application to leukocyte modeling. Phys Fluids 10(4):760–774

    Article  Google Scholar 

  • Khismatullin DB, Truskey GA (2005) Three-dimensional numerical simulation of receptor-mediated leukocyte adhesion to surfaces: effects of cell deformability and viscoelasticity. Phys Fluids 17(3):031505

    Article  MATH  Google Scholar 

  • King MR, Hammer DA (2001a) Multiparticle adhesive dynamics: hydrodynamic recruitment of rolling leukocytes. Proc National Academy Sci 98(26):14919–14924

    Article  Google Scholar 

  • King MR, Hammer DA (2001b) Multiparticle adhesive dynamics interactions between stably rolling cells. Biophys J 81(2):799–813

    Article  Google Scholar 

  • King MR, Phillips KG, Mitrugno A, Lee TR, de Guillebon AM, Chandrasekaran S, McGuire MJ, Carr RT, Baker-Groberg SM, Rigg RA et al (2015) A physical sciences network characterization of circulating tumor cell aggregate transport. Am J Physiol-Cell Physiol 308(10):C792–C802

    Article  Google Scholar 

  • Köhler S, Ullrich S, Richter U, Schumacher U (2010) E-/p-selectins and colon carcinoma metastasis: first in vivo evidence for their crucial role in a clinically relevant model of spontaneous metastasis formation in the lung. British J Cancer 102(3):602–609

    Article  Google Scholar 

  • Kojić N, Milošević M, Petrović D, Isailović V, Sarioglu AF, Haber DA, Kojić M, Toner M (2015) A computational study of circulating large tumor cells traversing microvessels. Comput Biol Med 63:187–195

    Article  Google Scholar 

  • Konstantopoulos K, Thomas SN (2009) Cancer cells in transit: the vascular interactions of tumor cells. Ann Rev Biomed Eng 11(1):177–202

    Article  Google Scholar 

  • Koop S, MacDonald IC, Luzzi K, Schmidt EE, Morris VL, Grattan M, Khokha R, Chambers AF, Groom AC (1995) Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res 55(12):2520–2523

    Google Scholar 

  • Kotsalos C, Latt J, Chopard B (2019) Bridging the computational gap between mesoscopic and continuum modeling of red blood cells for fully resolved blood flow. J Comput Phys 398:108905

    Article  MathSciNet  MATH  Google Scholar 

  • Kotsalos C, Latt J, Beny J, Chopard B (2021) Digital blood in massively parallel cpu/gpu systems for the study of platelet transport. Interface Focus 11(1):20190116

    Article  Google Scholar 

  • Krüger T, Varnik F, Raabe D (2011) Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice boltzmann finite element method. Comput Math Appl 61(12):3485–3505

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar A, Graham MD (2012) Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys Rev Lett 109(10):108102

    Article  Google Scholar 

  • Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196

    Article  Google Scholar 

  • Leighton D, Acrivos A (1987) Measurement of shear-induced self-diffusion in concentrated suspensions of spheres. J Fluid Mech 177:109–131

    Article  Google Scholar 

  • Lenarda P, Coclite A, Decuzzi P (2019) Unraveling the vascular fate of deformable circulating tumor cells via a hierarchical computational model. Cell Mol Bioeng 12(6):543–558

    Article  Google Scholar 

  • Leong FY, Li Q, Lim CT, Chiam KH (2011) Modeling cell entry into a micro-channel. Biomech Model Mechanobiol 10(5):755–766

    Article  Google Scholar 

  • Lucotti S, Muschel RJ (2020) Platelets and metastasis: new implications of an old interplay. Front Oncol 10:1350

    Article  Google Scholar 

  • Luo ZY, He L, Bai BF (2015) Deformation of spherical compound capsules in simple shear flow. J Fluid Mech 775:77–104

    Article  MathSciNet  MATH  Google Scholar 

  • Lykov K, Li X, Lei H, Pivkin IV, Karniadakis GE (2015) Inflow/outflow boundary conditions for particle-based blood flow simulations: application to arterial bifurcations and trees. PLoS Comput Biol 11(8):e1004410

    Article  Google Scholar 

  • Lykov K, Nematbakhsh Y, Shang M, Lim CT, Pivkin IV (2017) Probing eukaryotic cell mechanics via mesoscopic simulations. PLOS Comput Biol 13(9):e1005726

    Article  Google Scholar 

  • Ma Q, Dieterich LC, Ikenberg K, Bachmann SB, Mangana J, Proulx ST, Amann VC, Levesque MP, Dummer R, Baluk P et al (2018) Unexpected contribution of lymphatic vessels to promotion of distant metastatic tumor spread. Sci Adv 4:eaat4758

    Article  Google Scholar 

  • Marrinucci D, Bethel K, Bruce RH, Curry DN, Hsieh B, Humphrey M, Krivacic RT, Kroener J, Kroener L, Ladanyi A et al (2007) Case study of the morphologic variation of circulating tumor cells. Human Pathol 38(3):514–519

    Article  Google Scholar 

  • Marrinucci D, Bethel K, Kolatkar A, Luttgen MS, Malchiodi M, Baehring F, Voigt K, Lazar D, Nieva J, Bazhenova L et al (2012) Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys Biol 9(1):016003

    Article  Google Scholar 

  • Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10(24):8152–8162

    Article  Google Scholar 

  • Mitchell MJ, Wayne E, Rana K, Schaffer CB, King MR (2014) Trail-coated leukocytes that kill cancer cells in the circulation. Proc National Academy Sci 111(3):930–935

    Article  Google Scholar 

  • Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261

    Article  MathSciNet  MATH  Google Scholar 

  • Mittal R, Dong H, Bozkurttas M, Najjar F, Vargas A, Von Loebbecke A (2008) A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J Comput Phys 227(10):4825–4852

    Article  MathSciNet  MATH  Google Scholar 

  • Mollica H, Coclite A, Miali ME, Pereira RC, Paleari L, Manneschi C, DeCensi A, Decuzzi P (2018) Deciphering the relative contribution of vascular inflammation and blood rheology in metastatic spreading. Biomicrofluidics 12(4):042205

    Article  Google Scholar 

  • Myung JH, Gajjar KA, Pearson RM, Launiere CA, Eddington DT, Hong S (2011) Direct measurements on cd24-mediated rolling of human breast cancer mcf-7 cells on e-selectin. Anal Chem 83(3):1078–1083

    Article  Google Scholar 

  • Naxerova K, Reiter JG, Brachtel E, Lennerz JK, Van De Wetering M, Rowan A, Cai T, Clevers H, Swanton C, Nowak MA et al (2017) Origins of lymphatic and distant metastases in human colorectal cancer. Science 357(6346):55–60

    Article  Google Scholar 

  • Needham D, Hochmuth R (1990) Rapid flow of passive neutrophils into a 4 microns pipet and measurement of cytoplasmic viscosity. J Biomech Eng 112(3):269–76

    Article  Google Scholar 

  • Ortiz-Otero N, Marshall JR, Lash BW, King MR (2020) Platelet mediated trail delivery for efficiently targeting circulating tumor cells. Nanoscale Adv 2(9):3942–3953

    Article  Google Scholar 

  • Osmani N, Follain G, León MJG, Lefebvre O, Busnelli I, Larnicol A, Harlepp S, Goetz JG (2019) Metastatic tumor cells exploit their adhesion repertoire to counteract shear forces during intravascular arrest. Cell Rep 28(10):2491–2500

    Article  Google Scholar 

  • Palyanov A, Khayrulin S, Larson SD (2016) Application of smoothed particle hydrodynamics to modeling mechanisms of biological tissue. Adv Eng Softw 98:1–11

    Article  Google Scholar 

  • Pan W, Pivkin I, Karniadakis G (2008) Single-particle hydrodynamics in dpd: a new formulation. EPL (Europhys Lett) 84(1):10012

    Article  MathSciNet  Google Scholar 

  • Pappu V, Bagchi P (2008) 3d computational modeling and simulation of leukocyte rolling adhesion and deformation. Comput Biol Med 38(6):738–753

    Article  Google Scholar 

  • Pepona M, Balogh P, Puleri DF, Hynes WF, Robertson C, Dubbin K, Alvarado J, Moya ML, Randles A (2020) Investigating the interaction between circulating tumor cells and local hydrodynamics via experiment and simulations. Cell Mol Bioeng 13:527

    Article  Google Scholar 

  • Pereira ER, Kedrin D, Seano G, Gautier O, Meijer EF, Jones D, Chin SM, Kitahara S, Bouta EM, Chang J et al (2018) Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359(6382):1403–1407

    Article  Google Scholar 

  • Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10(2):252–271

    Article  MathSciNet  MATH  Google Scholar 

  • Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25(3):220–252

    Article  MathSciNet  MATH  Google Scholar 

  • Peskin CS (2002) The immersed boundary method. Acta Numerica 11(2002):479–517

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips KG, Kuhn P, McCarty OJ (2014) Physical biology in cancer 2 the physical biology of circulating tumor cells. Am J Physiol-Cell Physiol 306(2):C80–C88

    Article  Google Scholar 

  • Phillips KG, Lee AM, Tormoen GW, Rigg RA, Kolatkar A, Luttgen M, Bethel K, Bazhenova L, Kuhn P, Newton P et al (2015) The thrombotic potential of circulating tumor microemboli: computational modeling of circulating tumor cell-induced coagulation. Am J Physiol-Cell Physiol 308(3):C229–C236

    Article  Google Scholar 

  • Popel AS, Johnson PC (2005) Microcirculation and hemorheology. Annu Rev Fluid Mech 37:43–69

    Article  MathSciNet  MATH  Google Scholar 

  • Poudineh M, Sargent EH, Pantel K, Kelley SO (2018) Profiling circulating tumour cells and other biomarkers of invasive cancers. Nat Biomed Eng 2(2):72–84

    Article  Google Scholar 

  • Pozrikidis C (2003) Modeling and simulation of capsules and biological cells. CRC Press, Florida

    Book  MATH  Google Scholar 

  • Pozrikidis C (2005) Axisymmetric motion of a file of red blood cells through capillaries. Phys Fluids 17(3):031503

    Article  MathSciNet  MATH  Google Scholar 

  • Qi QM, Shaqfeh ES (2018) Time-dependent particle migration and margination in the pressure-driven channel flow of blood. Phys Rev Fluids 3(3):034302

    Article  Google Scholar 

  • Rachik M, Barthes-Biesel D, Carin M, Edwards-Levy F (2006) Identification of the elastic properties of an artificial capsule membrane with the compression test: effect of thickness. J Coll Interface Sci 301(1):217–226

    Article  Google Scholar 

  • Rahn JJ, Chow JW, Horne GJ, Mah BK, Emerman JT, Hoffman P, Hugh JC (2005) Muc1 mediates transendothelial migration in vitro by ligating endothelial cell icam-1. Clin Exp Metastasis 22(6):475

    Article  Google Scholar 

  • Raman PS, Paul CD, Stroka KM, Konstantopoulos K (2013) Probing cell traction forces in confined microenvironments. Lab on a Chip 13(23):4599–4607

    Article  Google Scholar 

  • Rejniak K (2012) Investigating dynamical deformations of tumor cells in circulation: predictions from a theoretical model. Front Oncol 2:111

    Article  Google Scholar 

  • Rejniak KA (2007) An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. Journal of Theor Biol 247(1):186–204

    Article  MathSciNet  MATH  Google Scholar 

  • Rejniak KA (2016) Circulating tumor cells when a solid tumor meets a fluid microenvironment. In: Systems Biology of Tumor Microenvironment. Springer, New York

  • Romiti A, Raffa S, Di Rocco R, Roberto M, Milano A, Zullo A, Leone L, Ranieri D, Mazzetta F, Medda E et al (2014) Circulating tumor cells count predicts survival in colorectal cancer patients. J Gastrointestin Liver Dis 23(3):279–284

    Article  Google Scholar 

  • Saintillan D, Darve E, Shaqfeh ES (2005) A smooth particle-mesh ewald algorithm for stokes suspension simulations: the sedimentation of fibers. Phys Fluids 17(3):033301

    Article  MATH  Google Scholar 

  • Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, Engstrom A, Zhu H, Sundaresan TK, Miyamoto DT et al (2015) A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods 12(7):685–691

    Article  Google Scholar 

  • Sato H (1976) Deformability and viability of tumor cells by transcapillary passage, with reference to organ affinity of metastasis in cancer. Fundamental Aspects Metastasis 11:311–317

    Google Scholar 

  • Secomb TW (2017) Blood flow in the microcirculation. Ann Rev Fluid Mech 49:443–461

    Article  MathSciNet  MATH  Google Scholar 

  • Selmi H, Elasmi L, Ghigliotti G, Misbah C (2011) Boundary integral and fast multipole method for two dimensional vesicle sets in poiseuille flow. Discrete Continuous Dyn Syst-B 15(4):1065

    Article  MathSciNet  MATH  Google Scholar 

  • Shea DJ, Li YW, Stebe KJ, Konstantopoulos K (2017) E-selectin-mediated rolling facilitates pancreatic cancer cell adhesion to hyaluronic acid. FASEB J 31(11):5078–5086

    Article  Google Scholar 

  • Shrivastava S, Tang J (1993) Large deformation finite element analysis of non-linear viscoelastic membranes with reference to thermoforming. J Strain Anal Eng Design 28(1):31–51

    Article  Google Scholar 

  • Skalak R, Tozeren A, Zarda RP, Chien S (1973) Strain energy function of red blood cell membranes. Biophys J 13(3):245–264

    Article  Google Scholar 

  • Soleimani M, Sahraee S, Wriggers P (2019) Red blood cell simulation using a coupled shell-fluid analysis purely based on the sph method. Biomech Model Mechanobiol 18(2):347–359

    Article  Google Scholar 

  • Spencer A, Spruell C, Nandi S, Wong M, Creixell M, Baker AB (2016) A high-throughput mechanofluidic screening platform for investigating tumor cell adhesion during metastasis. Lab on a Chip 16(1):142–152

    Article  Google Scholar 

  • Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc National Academy Sci 107(43):18392–18397

    Article  Google Scholar 

  • Stroka KM, Konstantopoulos K (2014) Physical biology in cancer 4 physical cues guide tumor cell adhesion and migration. Am J Physiol-Cell Physiol 306(2):C98–C109

    Article  Google Scholar 

  • Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta biomaterialia 3(4):413–438

    Article  Google Scholar 

  • Takeishi N, Imai Y, Yamaguchi T, Ishikawa T (2015) Flow of a circulating tumor cell and red blood cells in microvessels. Phys Rev E 92(6):063011

    Article  Google Scholar 

  • Takeishi N, Imai Y, Ishida S, Omori T, Kamm RD, Ishikawa T (2016) Cell adhesion during bullet motion in capillaries. Am J Physiol-Heart Circul Physiol 311(2):H395–H403

    Article  Google Scholar 

  • Tan J, Sohrabi S, He R, Liu Y (2018) Numerical simulation of cell squeezing through a micropore by the immersed boundary method. Proc Inst Mech Eng, Part C: J Mech Eng Sci 232(3):502–514

    Article  Google Scholar 

  • Tan J, Ding Z, Hood M, Li W (2019) Simulation of circulating tumor cell transport and adhesion in cell suspensions in microfluidic devices. Biomicrofluidics 13(6):064105

    Article  Google Scholar 

  • Thoumine O, Cardoso O, Meister JJ (1999) Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study. Europ Biophys J 28(3):222–234

    Article  Google Scholar 

  • Tong Z, Balzer EM, Dallas MR, Hung WC, Stebe KJ, Konstantopoulos K (2012) Chemotaxis of cell populations through confined spaces at single-cell resolution. PloS one 7(1):e29211

    Article  Google Scholar 

  • Tran S, Le Q, Leong F, Le D (2020) Modeling deformable capsules in viscous flow using immersed boundary method. Phys Fluids 32(9):093602

    Article  Google Scholar 

  • Tran-Son-Tay R, Needham D, Yeung A, Hochmuth R (1991) Time-dependent recovery of passive neutrophils after large deformation. Biophys J 60(4):856–866

    Article  Google Scholar 

  • Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan YJ (2001) A front-tracking method for the computations of multiphase flow. J Comput phys 169(2):708–759

    Article  MathSciNet  MATH  Google Scholar 

  • Tsai MA, Frank RS, Waugh RE (1993) Passive mechanical behavior of human neutrophils: power-law fluid. Biophys J 65(5):2078–2088

    Article  Google Scholar 

  • Ujihara Y, Nakamura M, Miyazaki H, Wada S (2010) Proposed spring network cell model based on a minimum energy concept. Ann Biomed Eng 38(4):1530–1538

    Article  Google Scholar 

  • Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100(1):25–37

    Article  MATH  Google Scholar 

  • Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA, Stylianopoulos T, Munn LL, Tearney GJ, Fukumura D, Jain RK et al (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15(10):1219–1223

    Article  Google Scholar 

  • Walter J, Salsac AV, Barthès-Biesel D, Le Tallec P (2010) Coupling of finite element and boundary integral methods for a capsule in a stokes flow. Int J Numeric Methods Eng 83(7):829–850

    Article  MathSciNet  MATH  Google Scholar 

  • Wang W, Diacovo TG, Chen J, Freund JB, King MR (2013) Simulation of platelet, thrombus and erythrocyte hydrodynamic interactions in a 3d arteriole with in vivo comparison. PLoS One 8(10):e76949

    Article  Google Scholar 

  • Williams KC, Wong E, Leong HS, Jackson DN, Allan AL, Chambers AF (2016) Cancer dissemination from a physical sciences perspective. Convergent Sci Phys Oncol 2(2):023001

    Article  Google Scholar 

  • Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11(7):512–522

    Article  Google Scholar 

  • Wu J, Cheng Y, Zhou W, Zhang C, Diao W (2019) Gpu acceleration of fsi simulations by the immersed boundary-lattice boltzmann coupling scheme. Comput Math Appl 78(4):1194–1205

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao L, Liu Y, Chen S, Fu B (2016) Numerical simulation of a single cell passing through a narrow slit. Biomech Model Mechanobiol 15(6):1655–1667

    Article  Google Scholar 

  • Xiao L, Liu Y, Chen S, Fu B (2017) Effects of flowing rbcs on adhesion of a circulating tumor cell in microvessels. Biomech Model Mechanobiol 16(2):597–610

    Article  Google Scholar 

  • Xu J, Tseng Y, Wirtz D (2000) Strain hardening of actin filament networks regulation by the dynamic cross-linking protein \(\alpha \)-actinin. J Biol Chem 275(46):35886–35892

    Article  Google Scholar 

  • Yan W, Cai B, Liu Y, Fu B (2012) Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels. Biomech Model Mechanobiol 11(5):641–653

    Article  Google Scholar 

  • Yang L, Effler JC, Kutscher BL, Sullivan SE, Robinson DN, Iglesias PA (2008) Modeling cellular deformations using the level set formalism. BMC Syst Biol 2(1):68

    Article  Google Scholar 

  • Yazdani A, Bagchi P (2012) Three-dimensional numerical simulation of vesicle dynamics using a front-tracking method. Phys Rev E 85(5):056308

    Article  Google Scholar 

  • Yazdani A, Bagchi P (2013) Influence of membrane viscosity on capsule dynamics in shear flow. J Fluid Mech 718:569

    Article  MathSciNet  MATH  Google Scholar 

  • Ye T, Peng L (2019) Motion, deformation, and aggregation of multiple red blood cells in three-dimensional microvessel bifurcations. Phys Fluids 31(2):021903

    Article  Google Scholar 

  • Ye T, Pan D, Huang C, Liu M (2019) Smoothed particle hydrodynamics (sph) for complex fluid flows: recent developments in methodology and applications. Phys Fluids 31(1):011301

    Article  Google Scholar 

  • Yeung A, Evans E (1989) Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys J 56(1):139–149

    Article  Google Scholar 

  • Zeidman I (1961) The fate of circulating tumor cells: I passage of cells through capillaries. Cancer Res 21(1):38–39

    Google Scholar 

  • Zhang J, Johnson PC, Popel AS (2007) An immersed boundary lattice boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys Biol 4(4):285

    Article  Google Scholar 

  • Zhang Z, Xu J, Hong B, Chen X (2014) The effects of 3d channel geometry on ctc passing pressure-towards deformability-based cancer cell separation. Lab on a Chip 14(14):2576–2584

    Article  Google Scholar 

  • Zhang Z, Chen X, Xu J (2015) Entry effects of droplet in a micro confinement: Implications for deformation-based circulating tumor cell microfiltration. Biomicrofluidics 9(2):024108

    Article  Google Scholar 

  • Zhao H, Isfahani AH, Olson LN, Freund JB (2010) A spectral boundary integral method for flowing blood cells. J Comput Phys 229(10):3726–3744

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng X, Cheung LSL, Schroeder JA, Jiang L, Zohar Y (2011) Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells. Lab on a chip 11(20):3431–3439

    Article  Google Scholar 

  • Zhong-Can OY, Helfrich W (1989) Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys Rev A 39(10):5280

    Article  Google Scholar 

  • Zhou L, Feng S, Liu H, Chang J (2019) Dissipative particle dynamics simulation of cell entry into a micro-channel. Eng Anal Bound Elem 107:47–52

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu L, Brandt L (2015) The motion of a deforming capsule through a corner. J Fluid Mech 770:374–397

    Article  MathSciNet  MATH  Google Scholar 

  • Zinchenko AZ, Davis RH (2000) An efficient algorithm for hydrodynamical interaction of many deformable drops. J Comput Phys 157(2):539–587

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Bradley Feiger, Jeff Ames, and Marianna Pepona for their comments during the editing process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Randles.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puleri, D.F., Balogh, P. & Randles, A. Computational models of cancer cell transport through the microcirculation. Biomech Model Mechanobiol 20, 1209–1230 (2021). https://doi.org/10.1007/s10237-021-01452-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-021-01452-6

Keywords

Navigation