Skip to main content
Log in

The application of finite element modelling based on clinical pQCT for classification of fracture status

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Fracture risk assessment using dual-energy X-ray absorptiometry (DXA) frequently fails to diagnose osteoporosis amongst individuals who later experience fragility fractures. Hence, more reliable techniques that improve the prediction of fracture risk are needed. In this study, we evaluated a finite element (FE) modelling framework based on clinical peripheral quantitative computed tomography (pQCT) imaging of the tibial epiphysis and diaphysis to predict the stiffness at these locations in compression, shear, torsion and bending. The ability of these properties to identify a group of women who had recently sustained a low-trauma fracture from an age- and weight-matched control group was determined and compared to clinical pQCT and DXA properties and structural properties based on composite beam theory. The predicted stiffnesses derived from the FE models and composite beam theory were significantly different (p < 0.05) between the control and fracture groups, whereas no meaningful differences were observed using DXA and for the stress–strain indices (SSIs) derived using pQCT. The diagnostic performance of each property was assessed by the odds ratio (OR) and the area under the receiver operating curve (AUC), and both were greatest for the FE-predicted shear stiffness (OR 16.09, 95% CI 2.52–102.56, p = 0.003) (AUC: 0.80, 95% CI 0.67–0.93). The clinical pQCT variable total density (ρtot) and a number of structural and FE-predicted variables had a similar probability of correct classification between the control and fracture groups (i.e. ORs and AUCs with mean values greater than 5.00 and 0.80, respectively). In general, the diagnostic characteristics were lower for variables derived using DXA and for the SSIs (i.e. ORs and AUCs with mean values of 1.65–2.98 and 0.64–0.71, respectively). For all properties considered, the trabecular-dominant tibial epiphysis exhibited enhanced classification characteristics, as compared to the cortical-dominant tibial diaphysis. The results of this study demonstrate that bone properties may be derived using FE modelling that have the potential to enhance fracture risk assessment using conventional pQCT or DXA instruments in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Enisa Shevroja, Jean-Yves Reginster, … Nicholas C. Harvey

References

  • Amin S, Kopperdhal DL, Melton LJ, Achenbach SJ, Therneau TM, Riggs BL, Keaveny TM, Khosla S (2011) Association of hip strength estimates by finite-element analysis with fractures in women and men. J Bone Miner Res 26(7):1593–1600

    Article  Google Scholar 

  • Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14(S3):13–18

    Article  Google Scholar 

  • Arlot ME, Sornay-Rendu E, Garnero P, Vey-Marty B, Delmas PD (1997) Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J Bone Miner Res 12(4):683–690

    Article  Google Scholar 

  • Ashe MC, Khan KM, Kontulainen SA, Guy P, Liu D, Beck TJ, McKay HA (2006) Accuracy of PQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int 17(8):1241–1251

    Article  Google Scholar 

  • Boutroy S, Van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML, Delmas PD (2008) Finite element analysis based on in vivo HR-PQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 23(3):392–399

    Article  Google Scholar 

  • Briggs AM, Perilli E, Parkinson IH, Wrigley TV, Fazzalari NL, Kantor S, Wark JD (2010) Novel assessment of subregional bone mineral density using DXA and PQCT and subregional microarchitecture using micro-CT in whole human vertebrae: applications, methods, and correspondence between technologies. J Clin Densitom 13(2):161–174

    Article  Google Scholar 

  • Cummings SR, Melton LJ (2002) Osteoporosis I: epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319):1761–1767

    Article  Google Scholar 

  • Cummings SR, Bates D, Black DM (2002) Clinical use of bone densitometry: scientific review. JAMA 288(15):1889–1897

    Article  Google Scholar 

  • Doube M, Kłosowski M, Arganda-Carreras I, Cordelières FP, Dougherty RP, Jackson JS, Schmid B, Hutchinson JR, Shefelbine SJ (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47(6):1076–1079

    Article  Google Scholar 

  • Dragomir-Daescu D, Op Den Buijs J, McEligot S, Dai Y, Entwistle RC, Salas C, Melton LJ, Bennet KE, Khosla S, Amin S (2011) Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann Biomed Eng 39(2):742–755

    Article  Google Scholar 

  • Duckham RL, Frank AW, Johnston JD, Olszynski WP, Kontulainen SA (2013) Monitoring time interval for PQCT-derived bone outcomes in postmenopausal women. Osteoporos Int 24(6):1917–1922

    Article  Google Scholar 

  • Duckham RL, Baxter-Jones ADG, Johnston JD, Vatanparast H, Cooper D, Kontulainen S (2014) Does physical activity in adolescence have site-specific and sex-specific benefits on young adult bone size, content, and estimated strength? J Bone Miner Res 29(2):479–486

    Article  Google Scholar 

  • Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, Felsenberg D, Ito M, Prevrhal S, Hans DB, Lewiecki EM (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom 11(1):123–162

    Article  Google Scholar 

  • Eriksen EF (2010) Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 11(4):219–227

    Article  Google Scholar 

  • Erlandson MC, Kontulainen SA, Chilibeck PD, Arnold CM, Faulkner RA, Baxter-Jones ADG (2012) Former premenarcheal gymnasts exhibit site-specific skeletal benefits in adulthood after long-term retirement. J Bone Miner Res 27(11):2298–2305

    Article  Google Scholar 

  • Eser P, Frotzler A, Zehnder Y, Denoth J (2005) Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography. Arch Phys Med Rehabil 86(3):498–504

    Article  Google Scholar 

  • Hansen MA, Overgaard K, Christiansen C (1995) Spontaneous postmenopausal bone loss in different skeletal areas—followed up for 15 years. J Bone Miner Res 10(2):205–210

    Article  Google Scholar 

  • Heller MO, Bergmann G, Deuretzbacher G, Dürselen L, Pohl M, Claes L, Haas NP, Duda GN (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34(7):883–893

    Article  Google Scholar 

  • Jamal SA, Gilbert J, Gordon C, Bauer DC (2006) Cortical PQCT measures are associated with fractures in dialysis patients. J Bone Miner Res 21(4):543–548

    Article  Google Scholar 

  • Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733

    Article  Google Scholar 

  • Kanis JA (2002) Osteoporosis III: diagnosis of osteoporosis and assessment of fracture risk. Lancet 359(9321):1929–1936

    Article  Google Scholar 

  • Kanis JA, Oden A, Johnell O, Johansson H, De Laet C, Brown J, Burckhardt P, Cooper C, Christiansen C, Cummings S, Eisman JA, Fujiwara S, Glüer C, Goltzman D, Hans D, Krieg MA, La Croix A, McCloskey E, Mellstrom D, Melton LJ, Pols H, Reeve J, Sanders K, Schott AM, Silman A, Torgerson D, Van Staa T, Watts NB, Yoshimura N (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18(8):1033–1046

    Article  Google Scholar 

  • Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24(1):23–57

    Article  Google Scholar 

  • Kawalilak CE, Kontulainen SA, Amini MA, Lanovaz JL, Olszynski WP, Johnston JD (2016) In vivo precision of three HR-PQCT-derived finite element models of the distal radius and tibia in postmenopausal women. BMC Musculoskelet Disord 17(1):1–11

    Article  Google Scholar 

  • Keyak JH, Rossi SA, Jones KA, Skinner HB (1997) Prediction of femoral fracture load using automated finite element modelling. J Biomech 31(2):125–133

    Article  Google Scholar 

  • Koivumäki JEM, Thevenot J, Pulkkinen P, Kuhn V, Link TM, Eckstein F, Jämsä T (2012) Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone 50(4):824–829

    Article  Google Scholar 

  • Kontulainen SA, Johnston JD, Liu D, Leung C, Oxland TR, McKay HA (2008) Strength indices from PQCT imaging predict up to 85% of variance in bone failure properties at tibial epiphysis and diaphysis. J Musculoskelet Neuronal Interact 8(4):401–409

    Google Scholar 

  • Kourtis LC, Carter DR, Kesari H, Beaupre GS (2008) A new software tool (VA-BATTS) to calculate bending, axial, torsional and transverse shear stresses within bone cross sections having inhomogeneous material properties. Comput Methods Biomech Biomed Eng 11(5):463–476

    Article  Google Scholar 

  • Kutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, Bergmann G (2010) Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 43(11):2164–2173

    Article  Google Scholar 

  • Lalkhen AG, McCluskey A (2008) Clinical tests: sensitivity and specificity. Contin Educ Anaesth Crit Care Pain 8(6):221–223

    Article  Google Scholar 

  • Li N, Li X, Xu L, Sun W, Cheng X, Tian W (2013) Comparison of QCT and DXA: osteoporosis detection rates in postmenopausal women. Int J Endocrinol. https://doi.org/10.1155/2013/895474

    Article  Google Scholar 

  • Liu XS, Zhang XH, Sekhon KK, Adams MF, McMahon DJ, Bilezikian JP, Shane E, Guo XE (2010) High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res 25(4):746–756

    Google Scholar 

  • Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Cosman F, Nieves J et al (2012) Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-PQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res 27(2):263–272

    Article  Google Scholar 

  • Lochmüller E-M, Lill CA, Kuhn V, Schneider E, Eckstein F (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17(9):1629–1638

    Article  Google Scholar 

  • McLellan AR, Gallacher SJ, Fraser M, McQuillian C (2003) The fracture liaison service: success of a program for the evaluation and management of patients with osteoporotic fracture. Osteoporos Int 14(12):1028–1034

    Article  Google Scholar 

  • Melton LJ, Christen D, Riggs BL, Achenbach SJ, Müller R, Van Lenthe GH, Amin S, Atkinson EJ, Khosla S (2010) Assessing forearm fracture risk in postmenopausal women. Osteoporos Int 21(7):1161–1169

    Article  Google Scholar 

  • Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus-density relationships depend on anatomic site. J Biomech 36(7):897–904

    Article  Google Scholar 

  • Muller ME, Webber CE, Bouxsein ML (2003) Predicting the failure load of the distal radius. Osteoporos Int 14(4):345–352

    Article  Google Scholar 

  • Nazrun AS, Tzar MN, Mokhtar SA, Mohamed IN (2014) A systematic review of the outcomes of osteoporotic fracture patients after hospital discharge: morbidity, subsequent fractures, and mortality. Ther Clin Risk Manag 10:937–948

    Google Scholar 

  • Nishiyama KK, Shane E (2013) Clinical imaging of bone microarchitecture with HR-PQCT. Curr Osteoporos Rep 11(2):147–155

    Article  Google Scholar 

  • Nishiyama KK, Macdonald HM, Hanley DA, Boyd SK (2013) Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-PQCT. Osteoporos Int 24(5):1733–1740

    Article  Google Scholar 

  • Pistoia W, van Rietbergen B, Lochmüller E-M, Lill CA, Eckstein F, Rüegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6):842–848

    Article  Google Scholar 

  • Premaor MO, Pilbrow L, Tonkin C, Adams M, Parker RA, Compston J (2009) Low rates of treatment in postmenopausal women with a history of low trauma fractures: results of audit in a fracture liaison service. QJM 103(1):33–40

    Article  Google Scholar 

  • Rinaldi G, Wisniewski CA, Setty NG, LeBoff MS (2011) Peripheral quantitative computed tomography: optimization of reproducibility measures of bone density, geometry, and strength at the radius and tibia. J Clin Densitom 14(3):367–373

    Article  Google Scholar 

  • Ringle CM, Wende S, Becker J-M (2015) SmartPLS 3. Boenningstedt SmartPLS GmbH. www.smartpls.com. Accessed 9 July 2018

  • Rohlmann A, Pohl D, Bender A, Graichen F, Dymke J, Schmidt H, Bergmann G (2014) Activities of everyday life with high spinal loads. PLoS ONE 9(5):1–10

    Article  Google Scholar 

  • Sattui SE, Saag KG (2014) Fracture mortality: associations with epidemiology and osteoporosis treatment. Nat Rev Endocrinol 10(10):592–602

    Article  Google Scholar 

  • Schuit SC, van der Klift M, Weel AEA, de Laet CED, Burger H, Seeman E, Hofman A, Uitterlinden A, van Leeuwen JPT, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 34(1):195–202

    Article  Google Scholar 

  • Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354(21):2250–2261

    Article  Google Scholar 

  • Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Berger ML, Santora AC, Sherwood LM (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the national osteoporosis risk assessment. JAMA 286(22):2815–2822

    Article  Google Scholar 

  • Snyder BD, Hauser-Kara DA, Hipp JA, Zurakowski D, Hecht AC, Gebhardt MC (2006) Predicting fracture through Benign skeletal lesions with quantitative computed tomography. J Bone Jt Surg 88–A(1):55–70

    Google Scholar 

  • Snyder BD, Cordio MA, Nazarian A, Kwak SD, Chang DJ, Entezari V, Zurakowski D, Parker LM (2009) Noninvasive prediction of fracture risk in patients with metastatic cancer to the spine. Clin Cancer Res 15(24):7676–7683

    Article  Google Scholar 

  • Stone KL, Seeley DG, Lui L-Y, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Min. Res 18(11):1947–1954

    Article  Google Scholar 

  • Thomsen JS, Laib A, Koller B, Prohaska S, Mosekilde L, Gowin W (2005) Stereological Measures of trabecular bone structure: comparison of 3D micro computed tomography with 2d histological sections in human proximal tibial bone biopsies. J Microsc 218(2):171–179

    Article  MathSciNet  Google Scholar 

  • Varga P, Baumbach S, Pahr D, Zysset PK (2009) Validation of an anatomy specific finite element model of Colles’ fracture. J Biomech 42(11):1726–1731

    Article  Google Scholar 

  • Vilayphiou N, Boutroy S, Szulc P, Van Rietbergen B, Munoz F, Delmas PD, Chapurlat R (2011) Finite element analysis performed on radius and tibia HR-PQCT images and fragility fractures at all sites in men. J Bone Miner Res 26(5):965–973

    Article  Google Scholar 

  • Whealan KM, Kwak SD, Tedrow JR, Inoue K, Snyder BD (2000) Noninvasive imaging predicts failure load of the spine with simulated osteolytic defects. J Bone Joint Surg Am 82(9):1240–1251

    Article  Google Scholar 

  • Yang PF, Sanno M, Ganse B, Koy T, Brüggemann GP, Müller LP, Rittweger J (2014) Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running. PLoS ONE 9(4):e94525

    Article  Google Scholar 

  • Yates CJ, Chauchard MA, Liew D, Bucknill A, Wark JD (2015) Bridging the osteoporosis treatment gap: performance and cost-effectiveness of a fracture liaison service. J Clin Densitom 18(2):150–156

    Article  Google Scholar 

  • Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35

    Article  Google Scholar 

  • Zysset PK, Dall’Ara E, Varga P, Pahr DH (2013) Finite element analysis for prediction of bone strength. Bonekey Rep 2(AUGUST):1–9

    Google Scholar 

Download references

Acknowledgements

We thank all participants for consenting to provide their pQCT tibia scan data for this study. We duly acknowledge Ashwini Kale for diligently performing all pQCT scans, Richard Farrugia for facilitating patient recruitment and clinic coordination activities and Associate Professor Andrew Bucknill for his strong support of the Royal Melbourne Hospital fracture liaison service. This work was supported by a collaborative PhD scholarship provided by the University of Melbourne and the China Scholarship Council to HJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vee Sin Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, D.L., Jiang, H., Song, Q. et al. The application of finite element modelling based on clinical pQCT for classification of fracture status. Biomech Model Mechanobiol 18, 245–260 (2019). https://doi.org/10.1007/s10237-018-1079-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-018-1079-7

Keywords

Navigation