Skip to main content
Log in

Gating mechanism of mechanosensitive channel of large conductance: a coupled continuum mechanical-continuum solvation approach

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Gating transition of the mechanosensitive channel of large conductance (MscL) represents a good example of important biological processes that are difficult to describe using atomistic simulations due to the large (submicron) length scale and long (millisecond) time scale. Here we develop a novel computational framework that tightly couples continuum mechanics with continuum solvation models to study the detailed gating behavior of E. coli-MscL. The components of protein molecules are modeled by continuum elements that properly describe their shape, material properties and physicochemical features (e.g., charge distribution). The lipid membrane is modeled as a three-layer material in which the lipid head group and tail regions are treated separately, taking into account the fact that fluidic lipid bilayers do not bear shear stress. Coupling between mechanical and chemical responses of the channel is realized by an iterative integration of continuum mechanics (CM) modeling and continuum solvation (CS) computation. Compared to previous continuum mechanics studies, the present model is capable of capturing the most essential features of the gating process in a much more realistic fashion: due mainly to the apolar solvation contribution, the membrane tension for full opening of MscL is reduced substantially to the experimental measured range. Moreover, the pore size stabilizes constantly during gating because of the intricate interactions of the multiple components of the system, implying the mechanism for sub-conducting states of MscL gating. A significant fraction (\(\sim \)2/3) of the gating membrane strain is required to reach the first sub-conducting state of our model, which is featured with a relative conductance of 0.115 to the fully opened state. These trends agree well with experimental observations. We anticipate that the coupled CM/CS modeling framework is uniquely suited for the analysis of many biomolecules and their assemblies under external mechanical stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ABAQUS (2011) ABAQUS 6.11 User’s Mannual. ABAQUS Inc. Pawtucket, RI

  • Ajouz B, Berrier C, Besnard M, Martinac B, Ghazi A (2000) Contributions of the different extramembranous domains of the mechanosensitive ion channel MscL to its response to membrane tension. J Biol Chem 275:1015–1022

    Article  Google Scholar 

  • Anishkin A, Akitake B, Kamaraju K, Chiang C, Sukharev S (2010) Hydration properties of mechanosensitive channel pores define the energetics of gating. J Phys Condens Matter 22:454120

    Article  Google Scholar 

  • Anishkin A, Chiang CS, Sukharev S (2005) Gain-of-function mutations reveal expanded intermediate states and a sequential action of two gates in MscL. J Gen Physiol 125:155–170. doi:10.1085/jgp.200409118

    Article  Google Scholar 

  • Anishkin A, Kung C (2005) Microbial mechanosensation. Curr Opin Neurobiol 15:397–405. doi:10.1016/j.conb.2005.06.002

    Article  Google Scholar 

  • Argudo D, Bethel NP, Marcoline FV, Grabe M (2016) Continuum descriptions of membranes and their interaction with proteins: towards chemically accurate models. Biochim Biophys Acta. doi:10.1016/j.bbamem.2016.02.003

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–10041. doi:10.1073/pnas.181342398

    Article  Google Scholar 

  • Bass RB, Strop P, Barclay M, Rees DC (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–1587

    Article  Google Scholar 

  • Beckstein O, Biggin PC, Sansom MSP (2001) A hydrophobic gating mechanism for nanopores. J Phys Chem B 105:12902–12905. doi:10.1021/Jp012233y

    Article  Google Scholar 

  • Beckstein O, Sansom MS (2004) The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores. Phys Biol 1:42–52. doi:10.1088/1478-3967/1/1/005

    Article  Google Scholar 

  • Berrier C, Besnard M, Ajouz B, Coulombe A, Ghazi A (1996) Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J Membrane Biol 151:175–187. doi:10.1007/s002329900068

    Article  Google Scholar 

  • Binder H, Gawrisch K (2001) Effect of unsaturated lipid chains on dimensions, molecular order and hydration of membranes. J Phys Chem B 105:12378–12390

    Article  Google Scholar 

  • Blount P, Schroeder MJ, Kung C (1997) Mutations in a bacterial mechanosensitive channel change the cellular response to osmotic stress. J Biol Chem 272:32150–32157

    Article  Google Scholar 

  • Booth IR, Edwards MD, Black S, Schumann U, Miller S (2007) Mechanosensitive channels in bacteria: signs of closure? Nat Rev Microbiol 5:431–440. doi:10.1038/nrmicro1659

    Article  Google Scholar 

  • Cao GX, Chen X (2006) Mechanisms of nanoindentation on single-walled carbon nanotubes: the effect of nanotube length. J Mater Res 21:1048–1070. doi:10.1557/Jmr.2006.0128

    Article  Google Scholar 

  • Chacon E, Tarazona P, Bresme F (2015) A computer simulation approach to quantify the true area and true area compressibility modulus of biological membranes. J Chem Phys 143:034706. doi:10.1063/1.4926938

    Article  Google Scholar 

  • Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220–2226

    Article  Google Scholar 

  • Chen X, Cui Q, Tang Y, Yoo J, Yethiraj A (2008) Gating mechanisms of mechanosensitive channels of large conductance, I: a continuum mechanics-based hierarchical framework. Biophys J 95:563–580. doi:10.1529/biophysj.107.128488

    Article  Google Scholar 

  • Chen X, Tang Y, Cao G (2006) Elastic properties of carbon nanotubes in the radial direction. Proc Inst Mech Eng Part N J Nanoeng Nanosyst 219:73–88. doi:10.1243/17403499jnn39

    Google Scholar 

  • Chiang CS, Anishkin A, Sukharev S (2004) Gating of the large mechanosensitive channel in situ: estimation of the spatial scale of the transition from channel population responses. Biophys J 86:2846–2861. doi:10.1016/S0006-3495(04)74337-4

    Article  Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524. doi:10.1038/Nature02196

    Article  Google Scholar 

  • Corry B, Hurst AC, Pal P, Nomura T, Rigby P, Martinac B (2010) An improved open-channel structure of MscL determined from FRET confocal microscopy and simulation. J Gen Physiol 136:483–494. doi:10.1085/jgp.200910376

    Article  Google Scholar 

  • Davis ME, Mccammon JA (1990) Electrostatics in biomolecular structure and dynamics. Chem Rev 90:509–521. doi:10.1021/Cr00101a005

    Article  Google Scholar 

  • Deng Y, Sun M, Shaevitz JW (2011) Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys Rev Lett 107:158101

    Article  Google Scholar 

  • Deplazes E, Louhivuori M, Jayatilaka D, Marrink SJ, Corry B (2012) Structural investigation of MscL gating using experimental data and coarse grained MD simulations. PLoS Comput Biol 8:e1002683

    Article  Google Scholar 

  • Dhaka A, Viswanath V, Patapoutian A (2006) Trp ion channels and temperature sensation. Ann Rev Neurosci 29:135–161. doi:10.1146/annurev.neuro.29.051605.112958

    Article  Google Scholar 

  • Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE (2012) Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 41:429–452. doi:10.1146/annurev-biophys-042910-155245

    Article  Google Scholar 

  • Geeves MA, Holmes KC (1999) Structural mechanism of muscle contraction. Annu Rev Biochem 68:687–728. doi:10.1146/annurev.biochem.68.1.687

    Article  Google Scholar 

  • Geeves MA, Holmes KC (2005) The molecular mechanism of muscle contraction. Adv Protein Chem 71:161–193. doi:10.1016/S0065-3233(04)71005-0

    Article  Google Scholar 

  • Gullingsrud J, Schulten K (2003) Gating of MscL studied by steered molecular dynamics. Biophys J 85:2087–2099. doi:10.1016/S0006-3495(03)74637-2

    Article  Google Scholar 

  • Gullingsrud J, Schulten K (2004) Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J 86:3496–3509

    Article  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    Google Scholar 

  • Haswell ES, Phillips R, Rees DC (2011) Mechanosensitive channels: What can they do and how do they do it? Structure 19:1356–1369. doi:10.1016/j.str.2011.09.005

    Article  Google Scholar 

  • Hayakawa K, Tatsumi H, Sokabe M (2008) Actin stress fibers transmit and focus force to activate mechanosensitive channels. J Cell Sci 121:496–503. doi:10.1242/jcs.022053

    Article  Google Scholar 

  • Heckbert PS, Garland M (1999) Optimal triangulation and quadric-based surface simplification. Comp Geom-Theor Appl 14:49–65. doi:10.1016/S0925-7721(99)00030-9

    Article  MathSciNet  MATH  Google Scholar 

  • Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149

    Article  Google Scholar 

  • Im W, Beglov D, Roux B (1998) Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson–Boltzmann equation. Comput Phys Commun 111:59–75. doi:10.1016/S0010-4655(98)00016-2

    Article  MATH  Google Scholar 

  • Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. Faseb J 20:811–827. doi:10.1096/fj.05-5424rev

    Article  Google Scholar 

  • Ingolfsson HI, Lopez CA, Uusitalo JJ, de Jong DH, Gopal SM, Periole X, Marrink SJ (2014) The power of coarse graining in biomolecular simulations. Wiley Interdiscip Rev Comput Mol Sci 4:225–248. doi:10.1002/wcms.1169

    Article  Google Scholar 

  • Iscla I, Blount P (2012) Sensing and responding to membrane tension: the bacterial MscL channel as a model system. Biophys J 103:169–174. doi:10.1016/j.bpj.2012.06.021

    Article  Google Scholar 

  • Iscla I, Wray R, Blount P (2008) On the structure of the N-terminal domain of the MscL channel: helical bundle or membrane interface. Biophys J 95:2283–2291

    Article  Google Scholar 

  • Jeon J, Voth GA (2008) Gating of the mechanosensitive channel protein MscL: the interplay of membrane and protein. Biophys J 94:3497–3511. doi:10.1529/biophysj.107.109850

    Article  Google Scholar 

  • Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci U S A 102:6679–6685. doi:10.1073/pnas.0408930102

    Article  Google Scholar 

  • Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 19:120–127. doi:10.1016/j.sbi.2009.03.004

    Article  Google Scholar 

  • Krishtal O (2003) The ASICs: signaling molecules? Modulators? Trends Neurosci 26:477–483. doi:10.1016/S0166-2236(03)00210-8

    Article  Google Scholar 

  • Levin G, Blount P (2004) Cysteine scanning of MscL transmembrane domains reveals residues critical for mechanosensitive channel gating. Biophys J 86:2862–2870. doi:10.1016/S0006-3495(04)74338-6

    Article  Google Scholar 

  • Louhivuori M, Risselada HJ, van der Giessen E, Marrink SJ (2010) Release of content through mechano-sensitive gates in pressurized liposomes. Proc Natl Acad Sci USA 107:19856–19860

    Article  Google Scholar 

  • Ma L, Yethiraj A, Chen X, Cui Q (2009) A computational framework for mechanical response of macromolecules: application to the salt concentration dependence of DNA bendability. Biophys J 96:3543–3554. doi:10.1016/j.bpj.2009.01.047

    Article  Google Scholar 

  • Markin VS, Sachs F (2004) Thermodynamics of mechanosensitivity. Phys Biol 1:110–124. doi:10.1088/1478-3967/1/2/007

    Article  Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824. doi:10.1021/jp071097f

    Article  Google Scholar 

  • Marrink SJ, Tieleman DP (2013) Perspective on the Martini model. Chem Soc Rev 42:6801–6822. doi:10.1039/c3cs60093a

    Article  Google Scholar 

  • Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460. doi:10.1242/jcs.01232

    Article  Google Scholar 

  • Martinac B, Kloda A (2003) Evolutionary origins of mechanosensitive ion channels. Prog Biophys Mol Biol 82:11–24

    Article  Google Scholar 

  • Moe P, Blount P (2005) Assessment of potential stimuli for mechano-dependent gating of MscL: effects of pressure, tension, and lipid headgroups. Biochemistry 44:12239–12244. doi:10.1021/bi0509649

    Article  Google Scholar 

  • Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834. doi:10.1021/Ct700324x

    Article  Google Scholar 

  • Pantano A, Boyce MC, Parks DM (2003) Nonlinear structural mechanics based modeling of carbon nanotube deformation. Phys Rev Lett 91:145504

    Article  Google Scholar 

  • Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B (2002a) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418:942–948. doi:10.1038/nature00992

    Article  Google Scholar 

  • Perozo E, Kloda A, Cortes DM, Martinac B (2002b) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9:696–703. doi:10.1038/nsb827

    Article  Google Scholar 

  • Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–385. doi:10.1038/nature08147

    Article  Google Scholar 

  • Powl AM, East JM, Lee AG (2003) Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Biochemistry 42:14306–14317

    Article  Google Scholar 

  • Powl AM, East JM, Lee AG (2005a) Heterogeneity in the binding of lipid molecules to the surface of a membrane protein: hot spots for anionic lipids on the mechanosensitive channel of large conductance MscL and effects on conformation. Biochemistry 44:5873–5883

    Article  Google Scholar 

  • Powl AM, East JM, Lee AG (2008) Importance of direct interactions with lipids for the function of the mechanosensitive channel MscL\({\dagger }\). Biochemistry 47:12175–12184

    Article  Google Scholar 

  • Powl AM, Wright JN, East JM, Lee AG (2005b) Identification of the hydrophobic thickness of a membrane protein using fluorescence spectroscopy: studies with the mechanosensitive channel MscL, 1. Biochemistry 44:5713–5721

    Article  Google Scholar 

  • Praprotnik M, Site LD, Kremer K (2008) Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu Rev Phys Chem 59:545–571. doi:10.1146/annurev.physchem.59.032607.093707

    Article  Google Scholar 

  • Sackin H (1995) Mechanosensitive channels. Annu Rev Physiol 57:333–353. doi:10.1146/annurev.ph.57.030195.002001

    Article  Google Scholar 

  • Saimi Y et al (1992) Patch clamp studies of microbial ion channels. Methods Enzymol 207:681–691

    Article  Google Scholar 

  • Sanner MF, Olson AJ, Spehner JC (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38:305–320

    Article  Google Scholar 

  • Saunders MG, Voth GA (2012) Coarse-graining of multiprotein assemblies. Curr Opin Struct Biol 22:144–150. doi:10.1016/j.sbi.2012.01.003

    Article  Google Scholar 

  • Sawada Y, Murase M, Sokabe M (2012) The gating mechanism of the bacterial mechanosensitive channel. MscL revealed by molecular dynamics simulations: from tension sensing to channel opening channels (Austin) 6:317–331. doi:10.4161/chan.21895

    Google Scholar 

  • Scarpa F, Adhikari S, Gil AJ, Remillat C (2010) The bending of single layer graphene sheets: the lattice versus continuum approach. Nanotechnology 21:125702. doi:10.1088/0957-4484/21/12/125702

    Article  Google Scholar 

  • Shi Q, Izvekov S, Voth GA (2006) Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. J Phys Chem B 110:15045–15048. doi:10.1021/jp062700h

    Article  Google Scholar 

  • Shinoda W, DeVane R, Klein ML (2012) Computer simulation studies of self-assembling macromolecules. Curr Opin Struct Biol 22:175–186. doi:10.1016/j.sbi.2012.01.011

    Article  Google Scholar 

  • Snow CD, Sorin EJ, Rhee YM, Pande VS (2005) How well can simulation predict protein folding kinetics and thermodynamics? Annu Rev Biophys Biomol Struct 34:43–69. doi:10.1146/annurev.biophys.34.040204.144447

    Article  Google Scholar 

  • Steinbacher S, Bass R, Strop P, Rees DC (2007) Structures of the prokaryotic mechanosensitive channels MscL and MscS. Mechanosensit Ion Channels Part A 58:1–24. doi:10.1016/S1063-5823(06)58001-9

    Article  Google Scholar 

  • Sukharev S, Anishkin A (2004) Mechanosensitive channels: What can we learn from ‘simple’ model systems? Trends Neurosci 27:345–351. doi:10.1016/j.tins.2004.04.006

    Article  Google Scholar 

  • Sukharev S, Betanzos M, Chiang CS, Guy HR (2001a) The gating mechanism of the large mechanosensitive channel MscL. Nature 409:720–724. doi:10.1038/35055559

    Article  Google Scholar 

  • Sukharev S, Corey DP (2004) Mechanosensitive channels: multiplicity of families and gating paradigms. Sci Signal 2004:re4

    Article  Google Scholar 

  • Sukharev S, Durell SR, Guy HR (2001b) Structural models of the MscL gating mechanism. Biophys J 81:917–936. doi:10.1016/S0006-3495(01)75751-7

    Article  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Kung C (1997) Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu Rev Physiol 59:633–657. doi:10.1146/annurev.physiol.59.1.633

    Article  Google Scholar 

  • Sukharev SI, Sigurdson WJ, Kung C, Sachs F (1999) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel. MscL J Gen Physiol 113:525–540

    Article  Google Scholar 

  • Tang Y, Cao G, Chen X, Yoo J, Yethiraj A, Cui Q (2006) A finite element framework for studying the mechanical response of macromolecules: application to the gating of the mechanosensitive channel MscL. Biophys J 91:1248–1263. doi:10.1529/biophysj.106.085985

    Article  Google Scholar 

  • Tang Y, Yoo J, Yethiraj A, Cui Q, Chen X (2008) Gating mechanisms of mechanosensitive channels of large conductance, II: systematic study of conformational transitions. Biophys J 95:581–596. doi:10.1529/biophysj.107.128496

  • Torres-Sánchez A, Vanegas JM, Arroyo M (2015) Examining the mechanical equilibrium of microscopic stresses in molecular simulations. Phys Rev Lett 114:258102

    Article  Google Scholar 

  • Tsai IJ, Liu ZW, Rayment J, Norman C, McKinley A, Martinac B (2005) The role of the periplasmic loop residue glutamine 65 for MscL mechanosensitivity. Eur Biophys J EBJ 34:403–412. doi:10.1007/s00249-005-0476-x

    Article  Google Scholar 

  • Tserpes KI, Papanikos P (2009) Continuum modeling of carbon nanotube-based super-structures. Compos Struct 91:131–137. doi:10.1016/j.compstruct.2009.04.039

    Article  Google Scholar 

  • Turner MS, Sens P (2004) Gating-by-tilt of mechanically sensitive membrane channels. Phys Rev Lett 93:118103

    Article  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. doi:10.1002/jcc.20291

    Article  Google Scholar 

  • Vanegas JM, Arroyo M (2014) Force transduction and lipid binding in MscL: a continuum-molecular approach. PloS one 9:e113947

    Article  Google Scholar 

  • Vanegas JM, Torres-Sánchez A, Arroyo M (2014) Importance of force decomposition for local stress calculations in biomembrane molecular simulations. J Chem Theory Comput 10:691–702

    Article  Google Scholar 

  • Venable RM, Brown FL, Pastor RW (2015) Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem Phys Lipids 192:60–74. doi:10.1016/j.chemphyslip.2015.07.014

    Article  Google Scholar 

  • Wagoner JA, Baker NA (2006) Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms. Proc Natl Acad Sci 103:8331–8336. doi:10.1073/pnas.0600118103

    Article  Google Scholar 

  • Wang HC, Thampatty BP (2006) An introductory review of cell mechanobiology. Biomech Model Mechanobiol 5:1–16

    Article  Google Scholar 

  • Wang Y et al (2014) Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. Elife 3:e01834. doi:10.7554/eLife.01834

    Google Scholar 

  • Wiggins P, Phillips R (2004) Analytic models for mechanotransduction: gating a mechanosensitive channel. Proc Natl Acad Sci USA 101:4071–4076. doi:10.1073/pnas.0307804101

    Article  Google Scholar 

  • Wisdom KM, Delp SL, Kuhl E (2014) Use it or lose it: multiscale skeletal muscle adaptation to mechanical stimuli. Biomech Model Mechanobiol 14:195–215

    Article  Google Scholar 

  • Yefimov S, van der Giessen E, Onck PR, Marrink SJ (2008) Mechanosensitive membrane channels in action. Biophys J 94:2994–3002. doi:10.1529/biophysj.107.119966

    Article  Google Scholar 

  • Yesylevskyy SO, Schafer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6:e1000810. doi:10.1371/journal.pcbi.1000810

    Article  Google Scholar 

  • Zeng Y, Ai KY, Teo SK, Chiam KH (2011) A three-dimensional random network model of the cytoskeleton and its role in mechanotransduction and nucleus deformation. Biomech Model Mechanobiol 11:49–59

    Article  Google Scholar 

Download references

Acknowledgments

X.C. acknowledges additional support from National Natural Science Foundation of China (11172231, 11372241 and 11572238), Advanced Research Projects Agency-Energy (DE-AR0000396) and Air Force Office of Scientific Research (FA9550-12-1-0159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Wu, J., Liu, L. et al. Gating mechanism of mechanosensitive channel of large conductance: a coupled continuum mechanical-continuum solvation approach. Biomech Model Mechanobiol 15, 1557–1576 (2016). https://doi.org/10.1007/s10237-016-0783-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-016-0783-4

Keywords

Navigation