Skip to main content
Log in

Model of cellular mechanotransduction via actin stress fibers

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Mechanical stresses due to blood flow regulate vascular endothelial cell structure and function and play a key role in arterial physiology and pathology. In particular, the development of atherosclerosis has been shown to correlate with regions of disturbed blood flow where endothelial cells are round and have a randomly organized cytoskeleton. Thus, deciphering the relation between the mechanical environment, cell structure, and cell function is a key step toward understanding the early development of atherosclerosis. Recent experiments have demonstrated very rapid (\(\sim \)100 ms) and long-distance (\(\sim \)10 \(\upmu \)m) cellular mechanotransduction in which prestressed actin stress fibers play a critical role. Here, we develop a model of mechanical signal transmission within a cell by describing strains in a network of prestressed viscoelastic stress fibers following the application of a force to the cell surface. We find force transmission dynamics that are consistent with experimental results. We also show that the extent of stress fiber alignment and the direction of the applied force relative to this alignment are key determinants of the efficiency of mechanical signal transmission. These results are consistent with the link observed experimentally between cytoskeletal organization, mechanical stress, and cellular responsiveness to stress. Based on these results, we suggest that mechanical strain of actin stress fibers under force constitutes a key link in the mechanotransduction chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashkin A, Schütze K, Dziedzic J, Euteneuer U, Schliwa M (1990) Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348:346–348

    Article  Google Scholar 

  • Barakat AI, Lieu DK, Gojova A (2006) Secrets of the code: Do vascular endothelial cells use ion channels to decipher complex flow signals? Biomaterials 27(5):671–678

    Article  Google Scholar 

  • Blumenfeld R (2006) Isostaticity and controlled force transmission in the cytoskeleton: a model awaiting experimental evidence. Biophys J 91(5):1970–1983

    Article  Google Scholar 

  • Caro C, Fitz-Gerald J, Schroter R (1969) Arterial wall shear and distribution of early atheroma in man. Nature 223:1159–1161

    Article  Google Scholar 

  • Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. J Am Coll Cardiol 49(25):2379–2393

    Article  Google Scholar 

  • Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292(3):H1209–H1224

    Article  Google Scholar 

  • Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88(1):39–48

    Article  Google Scholar 

  • Colombelli J, Besser A, Kress H, Reynaud EG, Girard P, Caussinus E, Haselmann U, Small JV, Schwarz US, Stelzer EH (2009) Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J Cell Sci 122(10):1665–1679

    Article  Google Scholar 

  • Conforti G, Dominguez-Jimenez C, Zanetti A, Gimbrone MA Jr, Cremona O, Marchisio P, Dejana E (1992) Human endothelial cells express integrin receptors on the luminal aspect of their membrane. Blood 80(2):437–446

    Google Scholar 

  • Costa M, Marchi M, Cardarelli F, Roy A, Beltram F, Maffei L, Ratto GM (2006) Dynamic regulation of ERK2 nuclear translocation and mobility in living cells. J Cell Sci 119(23):4952–4963

    Article  Google Scholar 

  • Davies PF (2008) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6(1):16–26

    Article  Google Scholar 

  • Davies PF, Robotewskyj A, Griem M (1993) Endothelial cell adhesion in real time. measurements in vitro by tandem scanning confocal image analysis. J Clin Investig 91(6):2640

    Article  Google Scholar 

  • Davies PF, Robotewskyj A, Griem ML (1994) Quantitative studies of endothelial cell adhesion. directional remodeling of focal adhesion sites in response to flow forces. J Clin Investig 93(5):2031

    Article  Google Scholar 

  • Deguchi S, Ohashi T, Sato M (2006) Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells. J Biomech 39(14):2603–2610

    Article  Google Scholar 

  • del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323(5914):638–641

    Article  Google Scholar 

  • Dewey C, Gimbrone M, Davies P, Bussolari S (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103(3):177–185

    Article  Google Scholar 

  • Flaherty JT, Pierce JE, Ferrans VJ, Patel DJ, Tucker WK, Fry DL (1972) Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ Res 30(1):23–33

    Article  Google Scholar 

  • Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93(10):e136–e142

    Article  Google Scholar 

  • Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls \(\alpha 5\beta 1\) function. Science 323(5914):642–644

    Article  Google Scholar 

  • Galbraith C, Skalak R, Chien S (1998) Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil Cytoskelet 40(4):317–330

    Article  Google Scholar 

  • Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21–33

    Article  Google Scholar 

  • Hahn C, Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10(1):53–62

    Article  Google Scholar 

  • Haidekker MA, L’Heureux N, Frangos JA (2000) Fluid shear stress increases membrane fluidity in endothelial cells: a study with dcvj fluorescence. Am J Physiol Heart Circ Physiol 278(4):H1401–H1406

    Google Scholar 

  • Han B, Bai XH, Lodyga M, Xu J, Yang BB, Keshavjee S, Post M, Liu M (2004) Conversion of mechanical force into biochemical signaling. J Biol Chem 279(52):54,793–54,801

    Article  Google Scholar 

  • Helmlinger G, Geiger R, Schreck S, Nerem R (1991) Effects of pulsatile flow on cultured vascular endothelial cell morphology. J Biomech Eng 113(2):123–131

    Article  Google Scholar 

  • Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356):316–323

    Article  Google Scholar 

  • Hu S, Wang N (2006) Control of stress propagation in the cytoplasm by prestress and loading frequency. Mol Cell Biomech 3(2):49

    Google Scholar 

  • Hu S, Chen J, Fabry B, Numaguchi Y, Gouldstone A, Ingber DE, Fredberg JJ, Butler JP, Wang N (2003) Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am J Physiol Cell Physiol 285(5):C1082–C1090

    Article  Google Scholar 

  • Hu S, Eberhard L, Chen J, Love JC, Butler JP, Fredberg JJ, Whitesides GM, Wang N (2004) Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device. Am J Physiol Cell Physiol 287(5):C1184–C1191

    Article  Google Scholar 

  • Hu S, Chen J, Butler JP, Wang N (2005) Prestress mediates force propagation into the nucleus. Biochem Biophys Res Commun 329(2):423–428

    Article  Google Scholar 

  • Hwang Y, Barakat AI (2012) Dynamics of mechanical signal transmission through prestressed stress fibers. PloS One 7(4):e35,343

    Article  Google Scholar 

  • Hwang Y, Gouget CLM, Barakat AI (2012) Mechanisms of cytoskeleton-mediated mechanical signal transmission in cells. Commun Integr Biol 5(6):538–542

    Article  Google Scholar 

  • Janmey PA (1998) The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev 78(3):763–781

    Google Scholar 

  • Kano Y, Katoh K, Masuda M, Fujiwara K (1996) Macromolecular composition of stress fiber-plasma membrane attachment sites in endothelial cells in situ. Circ Res 79(5):1000–1006

    Article  Google Scholar 

  • Katoh K, Kano Y, Ookawara S (2008) Role of stress fibers and focal adhesions as a mediator for mechano-signal transduction in endothelial cells in situ. Vasc Health Risk Manag 4(6):1273

    Google Scholar 

  • Kholodenko BN, Hancock JF, Kolch W (2010) Signalling ballet in space and time. Nat Rev Mol Cell Biol 11(6):414–426

    Article  Google Scholar 

  • Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, Salanga M, Mazur E, Ingber DE (2006) Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J 90(10):3762–3773

    Article  Google Scholar 

  • Leckband DE, le Duc Q, Wang N, de Rooij J (2011) Mechanotransduction at cadherin-mediated adhesions. Curr Opin Cell Biol 23(5):523–530

    Article  Google Scholar 

  • Lele TP, Pendse J, Kumar S, Salanga M, Karavitis J, Ingber DE (2006) Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells. J Cell Physiol 207(1):187–194

    Article  Google Scholar 

  • Li S, Chen BP, Azuma N, Hu YL, Wu SZ, Sumpio BE, Shyy JYJ, Chien S (1999) Distinct roles for the small GTPases cdc42 and rho in endothelial responses to shear stress. J Clin Investig 103(8):1141–1150

  • Lu L, Oswald SJ, Ngu H, Yin FCP (2008) Mechanical properties of actin stress fibers in living cells. Biophys J 95(12):6060–6071

    Article  Google Scholar 

  • Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc 282(21):2035–2042

    Article  Google Scholar 

  • Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, Wang N (2008) Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci 105(18):6626–6631

    Article  Google Scholar 

  • Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10(1):11–20

    Article  Google Scholar 

  • Poh YC, Na S, Chowdhury F, Ouyang M, Wang Y, Wang N (2009) Rapid activation of Rac GTPase in living cells by force is independent of Src. PLoS One 4(11):e7886

    Article  Google Scholar 

  • Poh YC, Shevtsov SP, Chowdhury F, Wu DC, Na S, Dundr M, Wang N (2012) Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells. Nat Commun 3:866

    Article  Google Scholar 

  • Sawada Y, Sheetz MP (2002) Force transduction by triton cytoskeletons. J Cell Biol 156(4):609–615

    Article  Google Scholar 

  • Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S, Sheetz MP (2006) Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127(5):1015–1026

    Article  Google Scholar 

  • Schiller HB, Fässler R (2013) Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep 14(6):509–519

    Article  Google Scholar 

  • Shamloo A, Ma N, Mm Poo, Sohn LL, Heilshorn SC (2008) Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8(8):1292–1299

    Article  Google Scholar 

  • Shyy JYJ, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91(9):769–775

    Article  Google Scholar 

  • Smith MA, Blankman E, Gardel ML, Luettjohann L, Waterman CM, Beckerle MC (2010) A zyxin-mediated mechanism for actin stress fiber maintenance and repair. Dev cell 19(3):365–376

    Article  Google Scholar 

  • Sukharev S, Betanzos M, Chiang CS, Guy HR (2001) The gating mechanism of the large mechanosensitive channel mscl. Nature 409(6821):720–724

    Article  Google Scholar 

  • Tarbell JM, Pahakis M (2006) Mechanotransduction and the glycocalyx. J Intern Med 259(4):339–350

    Article  Google Scholar 

  • Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057):426–431

    Article  Google Scholar 

  • Vogel V (2006) Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu Rev Biophys Biomol Struct 35:459–488

    Article  Google Scholar 

  • Wang N, Ingber DE (1994) Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys J 66(6):2181–2189

    Article  Google Scholar 

  • Wang N, Suo Z (2005) Long-distance propagation of forces in a cell. Biochem Biophys Res Commun 328(4):1133–1138

    Article  Google Scholar 

  • Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10(1):75–82

    Article  Google Scholar 

  • Wong AJ, Pollard TD, Herman IM (1983) Actin filament stress fibers in vascular endothelial cells in vivo. Science 219(4586):867–869

    Article  Google Scholar 

  • Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) \(\alpha \)-catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12(6):533–542

    Article  Google Scholar 

  • Yoshigi M, Hoffman LM, Jensen CC, Yost HJ, Beckerle MC (2005) Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J Cell Biol 171(2):209–215

    Article  Google Scholar 

Download references

Acknowledgments

C.L.M. Gouget is supported by Ecole Polytechnique through a Gaspard Monge International Scholarship. This work was funded in part by an endowment in Cardiovascular Cellular Engineering from the AXA Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul I. Barakat.

Appendix

Appendix

Results obtained with a single stress fiber (Hwang and Barakat 2012) suggest that stress fiber inertia is negligible, so that wave perturbations in the deformation field are damped by fiber internal viscosity. In support of this notion, the results show that force transmission dynamics are indeed dominated by spatially monotonic deformation of stress fibers. Therefore, the structure of the deformation field does not change significantly in time, and displacement of the fiber can be written as:

$$\begin{aligned}&w_\mathrm{v}(x,t)=a_\mathrm{v}(t)\psi _\mathrm{v}(x), \end{aligned}$$
(20a)
$$\begin{aligned}&w_\mathrm{l}(x,t)=a_\mathrm{l}(t)\psi _\mathrm{l}(x). \end{aligned}$$
(20b)

Substituting Eqs. (20a) and (20b) into Eqs. (1a) and (1b) and integrating these equations over the spatial domain yield:

$$\begin{aligned}&\frac{\sigma _\mathrm{p}A}{L}\underbrace{\left( \int _0^1 \frac{\hbox {d}^2 \psi _\mathrm{v}(\hat{x})}{\hbox {d} \hat{x}^2} \hbox {d}\hat{x}\right) }_{C_{1,v}}a_\mathrm{v}(t) \nonumber \\&\quad +\,\frac{\gamma I}{L^3}\underbrace{\left( -\int _0^1 \frac{\hbox {d}^4 \psi _\mathrm{v}(\hat{x})}{\hbox {d} \hat{x}^4} \hbox {d}\hat{x}\right) }_{C_{2,v}}\frac{\hbox {d}a_\mathrm{v}(t)}{\hbox {d}t}+F_\mathrm{v}=0, \end{aligned}$$
(21a)
$$\begin{aligned}&\frac{EA}{L}\underbrace{\left( \int _0^1 \frac{\hbox {d}^2 \psi _\mathrm{l}(\hat{x})}{\hbox {d} \hat{x}^2} \hbox {d}\hat{x}\right) }_{C_\mathrm{l}}a_\mathrm{l}(t) \nonumber \\&\quad +\,\frac{\gamma A}{L}\underbrace{\left( \int _0^1 \frac{\hbox {d}^2 \psi _\mathrm{l}(\hat{x})}{\hbox {d} \hat{x}^2} \hbox {d}\hat{x}\right) }_{C_\mathrm{l}}\frac{\hbox {d}a_\mathrm{l}(t)}{\hbox {d}t}+F_\mathrm{l}=0, \end{aligned}$$
(21b)

where \(\hat{x}\) is defined as x / L.

Equations (20a) and (20b) can be used to relate the displacement of the free end of the fiber to the time functions \(a_\mathrm{v}\) and \(a_\mathrm{l}\): \(w_\mathrm{v}^\mathrm{end}(t)=a_\mathrm{v}(t)\psi _\mathrm{v}(0)\) and \(w_\mathrm{l}^\mathrm{end}(t)=a_\mathrm{l}(t)\psi _\mathrm{l}(0)\) and \(w_\mathrm{l}(t) =a_\mathrm{l}(t)\psi _\mathrm{l} (0)\). Rearranging equations (21) with \(\hat{C}_{1,\mathrm{v}}=C_{1,\mathrm{v}}/\psi _\mathrm{v}(0)\), \(\hat{C}_{2,\mathrm{v}}=C_{2,\mathrm{v}}/\psi _\mathrm{v}(0)\) and \(\hat{C}_\mathrm{l}=C_\mathrm{l}/\psi _\mathrm{l}(0)\), we obtain the following ordinary differential equations (ODEs) that describe the motion of the free end of the fiber (\(x=0\)):

$$\begin{aligned}&\frac{\sigma _\mathrm{p}A}{L}\hat{C}_{1,\mathrm{v}}w^\mathrm{end}_\mathrm{v}(t) + \frac{\gamma I}{L^3}\hat{C}_{2,\mathrm{v}}\frac{\hbox {d}w^\mathrm{end}_\mathrm{v}(t)}{\hbox {d}t}+F_\mathrm{v}=0, \end{aligned}$$
(22a)
$$\begin{aligned}&\frac{EA}{L}\hat{C}_\mathrm{l}w^\mathrm{end}_\mathrm{l}(t) + \frac{\gamma A}{L}\hat{C}_\mathrm{l}\frac{\hbox {d}w^\mathrm{end}_\mathrm{l}(t)}{\hbox {d}t}+F_\mathrm{l}=0. \end{aligned}$$
(22b)

An order of magnitude analysis on the three constants \(\hat{C}_{1,\mathrm{v}}\), \(\hat{C}_{2,\mathrm{v}}\), and \(\hat{C}_\mathrm{l}\) reveals that their magnitudes are O(1). We detail the analysis for the case of \(\hat{C}_{1,\mathrm{v}}\):

$$\begin{aligned} \hat{C}_{1,\mathrm{v}}=\frac{1}{\psi _\mathrm{v}(0)}\int _0^1 \frac{\hbox {d}^2 \psi _\mathrm{v}(\hat{x})}{\hbox {d} \hat{x}^2} \hbox {d}\hat{x}=\frac{1}{\psi _\mathrm{v}(0)}\frac{\hbox {d} \psi _\mathrm{v}(\hat{x})}{\hbox {d} \hat{x}}\Big |_{\hat{x}=1}, \end{aligned}$$
(23)

given that the boundary condition at \(x=0\) imposes that \(d \psi _\mathrm{v}(\hat{x})/\hbox {d} \hat{x}|_{\hat{x}=0}=0\). The derivative of \(\psi _\mathrm{v}\) at \(\hat{x}=1\) can be approximated by \((\psi _\mathrm{v}(1)-\psi _\mathrm{v}(0))/(1-0)\), where \(\psi _\mathrm{v}(1)=0\). Substituting this into Eq. 23 yields \(\hat{C}_{1,v}= O(1)\).

Because forces associated with prestress, elasticity, and material viscosity act against the direction of the externally applied force, their signs should be negative, and it is reasonable to approximate \(\hat{C}_{1,\mathrm{v}}=\hat{C}_{2,\mathrm{v}}=\hat{C}_\mathrm{l}=-1\). Hence, the transverse and longitudinal motions of the free end are governed by the two ODEs given by Eqs. 5a and 5b.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouget, C.L.M., Hwang, Y. & Barakat, A.I. Model of cellular mechanotransduction via actin stress fibers. Biomech Model Mechanobiol 15, 331–344 (2016). https://doi.org/10.1007/s10237-015-0691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0691-z

Keywords

Navigation