Skip to main content
Log in

Influence of the aortic valve leaflets on the fluid-dynamics in aorta in presence of a normally functioning bicuspid valve

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

In this work, we consider the blood fluid-dynamics in the ascending aorta in presence of a normally functioning bicuspid aortic valve (BAV). In particular, we perform an unsteady finite element study in real geometries with physiological velocity boundary conditions at the inlet to assess the effect of the inclusion of the leaflets on the fluid-dynamic abnormalities characterizing BAV cases. To this aim, we perform a comparison in two geometries (a dilated and a non-dilated ones) among three scenarios which are built up for each geometry: BAV without leaflets, BAV with leaflets, and tricuspid case with leaflets. For each case, we compute four indices quantifying flow asymmetry, reversal flows, helical patterns, and wall shear stresses. Our results show that the inclusion of the leaflets increases the fluid-dynamics abnormalities, especially for the non-dilated configuration, which presents a greater increment of the indices. In particular, we observe that the values of the time-averaged wall shear stress and of the systolic jet asymmetry increase by approximatively 100 and 40 %, respectively, when considering the leaflets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Atkins S, Cao K, Rajamannan N, Sucosky P (2014) Bicuspid aortic valve hemodynamics induces abnormal medial remodeling in the convexity of porcine ascending aortas. Biomech Model Mechanobiol 13(6):1209–1225

  • Avolio P (1980) Multi-branched model of the human arterial system. Med Biol Eng Comput 18(6):709–718

    Article  Google Scholar 

  • Barker A, Markl M (2011) The role of hemodynamics in bicuspid aortic valve disease. Eur J Cardiothorac Surg 39(6):805–806

    Article  Google Scholar 

  • Barker A, Lanning C, Shandas R (2010) Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast mri. Ann Biomed Eng 38(3):788–800

    Article  Google Scholar 

  • Barker A, Markl M, Burk J, Lorenz R, Bock J, Bauer S, Schulz-Menger J, Von Knobelsdorff-Brenkenhoff F (2012) Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imag 5(4):457–466

    Article  Google Scholar 

  • Bauer M, Siniawski H, Pasic M, Schaumann B, Hetzer R (2006) Different hemodynamic stress of the ascending aorta wall in patients with bicuspid and tricuspid aortic valve. J Card Surg 21(3):218–220

    Article  Google Scholar 

  • Billiar K, Sacks M (2000) Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: Experimental results. J Biomech Eng 122(1):23–30

    Article  Google Scholar 

  • Borazjani I, Ge L, Sotiropoulos F (2010) High-resolution fluid-structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann Biomed Eng 38(2):326–344

    Article  Google Scholar 

  • Borazjani I, Sotiropoulos F (2010) The effect of implantation orientation of a bileaflet mechanical heart valve on kinematics and hemodynamics in an anatomic aorta. J Biomech Eng 132(11):111005

  • Borazjani I (2013) Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput Methods Appl Mech Eng 253:103–116

    Article  MathSciNet  Google Scholar 

  • Burman E, Fernandez M, Hansbo P (2006) Continuous interior penalty finite element method for Oseen’s equations. SIAM J Numer Anal 44(3):1248–1274

    Article  MathSciNet  MATH  Google Scholar 

  • Caruso MV, Gramigna V, Rossi M, Serraino GF, Renzulli A, Fragomeni G (2015) A computational fluid dynamics comparison between different outflow graft anastomosis locations of Left Ventricular Assist Device (LVAD) in a patient-specific aortic model. Int J Numer Methods Biomed Eng 31(2)

  • Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman H, Raad PE (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng Trans ASME 130:1–4

    Google Scholar 

  • Chandra S, Rajamannan N, Sucosky P (2012) Computational assessment of bicuspid aortic valve wall-shear stress: Implications for calcific aortic valve disease. Biomech Model Mechanobiol 11(7):1085–1096

    Article  Google Scholar 

  • Conti C, Della Corte A, Votta E, Del Viscovo L, Bancone C, De Santo L, Redaelli A (2010) Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data. J Thor Cardiovasc Surg 140(4):890–896

    Article  Google Scholar 

  • Della Corte A, Bancone C, Conti C, Votta E, Redaelli A, Del Viscovo L, Cotrufo M (2012) Restricted cusp motion in right-left type of bicuspid aortic valves: a new risk marker for aortopathy. J Thorac Cardiovasc Surg 144(2):360–369

    Article  Google Scholar 

  • Den Reijer P, Sallee D, Van Der Velden P, Zaaijer E, Parks W, Ramamurthy S, Robbie T, Donati G, Lamphier C, Beekman R, Brummer M (2010) Hemodynamic predictors of aortic dilatation in bicuspid aortic valve by velocity-encoded cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12(1)

  • Donal E, Novaro G, Deserrano D, Popovic Z, Greenberg N, Richards K, Thomas J, Garcia M (2005a) Planimetric assessment of anatomic valve area overestimates effective orifice area in bicuspid aortic stenosis. J Am Soc Echocardiogr 18(12):1392–1398

    Article  Google Scholar 

  • Donal E, Raud-Raynier P, Coisne D, Allal J, Herpin D (2005b) Tissue doppler echocardiographic quantification. Comparison to coronary angiography results in acute coronary syndrome patients. Cardiovasc Ultrasound 3(10)

  • Faggiano E, Antiga L, Puppini G, Quarteroni A, Luciani G, Vergara C (2013) Helical flows and asymmetry of blood jet in dilated ascending aorta with normally bicuspid valve. Biomech Model Mechanobiol 12(4):801–813

    Article  Google Scholar 

  • Fedak P, Verma S, David T, Leask R, Weisel R, Butany J (2002) Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation 106(8):900–904

    Article  Google Scholar 

  • Formaggia L, Quarteroni A, Veneziani A (2009) Cardiovascular mathematics, modeling and simulation of the circulatory system, vol 1. Springer, Berlin

    MATH  Google Scholar 

  • Girdauskas E, Borger M, Secknus M, Girdauskas G, Kuntze T (2011) Is aortopathy in bicuspid aortic valve disease a congenital defect or a result of abnormal hemodynamics? A critical reappraisal of a one-sided argument. Eur J Cardiothorac Surg 39(6):809–815

    Article  Google Scholar 

  • Girdauskas E, Disha K, Borger MA, Kuntze T (2012) Relation of bicuspid aortic valve morphology to the dilatation pattern of the proximal aorta: focus on the transvalvular flow. Cardiol Res Pract 1(1)

  • Guntheroth WG (2008) A critical review of the American college of cardiology/American heart association practice guidelines on bicuspid aortic valve with dilated ascending aorta. Am J Cardiol 102:107–110

  • Hahn R, Roman M, Mograder A, Devereux R (1992) Association of aortic dilation with regurgitant, stenotic and functionally normal bicuspid aortic valves. J Am Coll Cardiol 19(2):283–288

    Article  Google Scholar 

  • Hope M, Hope T, Meadows A, Ordovas K, Urbania T, Alley M, Higgins C (2010) Bicuspid aortic valve: four-dimensional mr evaluation of ascending aortic systolic flow patterns. Radiology 255(1):53–61

    Article  Google Scholar 

  • Hope M, Hope T, Crook S, Ordovas K, Urbania T, Alley M, Higgins C (2011) 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging 4(7):781–787

    Article  Google Scholar 

  • Hope M, Sigovan M, Wrenn S, Saloner D, Dyverfeldt P (2014) MRI hemodynamic markers of progressive bicuspid aortic valve-related aortic disease. J Magn Reson Imaging 40(1):140–145

    Article  Google Scholar 

  • Keshavarz-Motamed Z, Garcia J, Gaillard E, Capoulade R, Le Ven F, Cloutier G, Kadem L, Pibarot P (2014) Non-invasive determination of left ventricular workload in patients with aortic stenosis using magnetic resonance imaging and doppler echocardiography. PLoS One 9(1)

  • LaDisa J, Taylor C, Feinstein J (2010) Aortic coarctation: recent developments in experimental and computational methods to assess treatments for this simple condition. Prog Pediatr Cardiol 30(1–2):45–49

    Article  Google Scholar 

  • Lantz J, Renner J, Karlsson M (2011) Wall shear stress in a subject specific human aorta—influence of fluid-structure interaction. Int J Appl Mech 759(3)

  • Le TB, Sotiropoulos F (2013) Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J Comput Phys 244(1):44–62

    MathSciNet  Google Scholar 

  • Luciani G, De Rita F, Lucchese G, Hila D, Rungatscher A, Faggian G, Mazzucco A (2012) Repair of congenitally dysplastic aortic valve by bicuspidization: midterm results. Ann Thorac Surg 94(4):1173–1179

    Article  Google Scholar 

  • Marom G, Haj-Ali R, Rosenfeld M, SchÃd’fers H, Raanani E (2013a) Aortic root numeric model: annulus diameter prediction of effective height and coaptation in post-aortic valve repair. J Thorac Cardiovasc Surg 145(2):406–411

    Article  Google Scholar 

  • Marom G, Kim HS, Rosenfeld M, Raanani E, Haj-Ali R (2013b) Fully coupled fluid-structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics. Med Biol Eng Comput 51(8):839–848

    Article  Google Scholar 

  • May-Newman K, Yin F (1998) A constitutive law for mitral valve tissue. J Biomech Eng 120(1):38–47

    Article  Google Scholar 

  • Moireau P, Xiao N, Astorino M, Figueroa C, Chapelle D, Taylor C, Gerbeau JF (2012) External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol 11(1–2):1–18

    Article  Google Scholar 

  • Nkomo V, Enriquez-Sarano M, Ammash N, Melton L, Bailey K, Desjardins V, Horn R, Tajik A (2003) Bicuspid aortic valve associated with aortic dilatation. Arterioscler Thromb Vasc Biol 23(2):351–356

    Article  Google Scholar 

  • Pasta S, Phillippi J, Gleason T, Vorp D (2012) Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta. J Thorac Cardiovas Surg 143(2):460–467

    Article  Google Scholar 

  • Pasta S, Rinaudo A, Luca A, Pilato M, Scardulla C, Gleason T, Vorp D (2013) Difference in hemodynamic and wall stress of ascending thoracic aortic aneurysms with bicuspid and tricuspid aortic valve. J Biomech 46(10):1729–1738

    Article  Google Scholar 

  • Saikrishnan N, Yap C, Milligan N, Vasilyev N, Yoganathan A (2012) In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Ann Biomed Eng 40:1760–1775

    Article  Google Scholar 

  • Saikrishnan N, Mirabella L, Yoganathan A (2014) Bicuspid aortic valves are associated with increased wall and turbulence shear stress levels compared to trileaflet aortic valves. Biomech Model Mechanobiol. doi:10.1007/s10237-014-0623-3

  • Schapira J, Martin R, Fowles R (1979) Two dimensional echocardiographic assessment of patients with bioprosthetic valves. Am J Cardiol 43(3):510–519

  • Sigovan M, Hope M, Dyverfeldt P, Saloner D (2011) Comparison of four-dimensional flow parameters for quantification of flow eccentricity in the ascending aorta. J Magn Reson Imaging 34(5):1226–1230

    Article  Google Scholar 

  • Tan FPP, Borghi A, Mohiaddin RH, Wood NB, Thom S, Xu XY (2009) Analysis of flow patterns in a patient-specific thoracic aortic aneurysm model. Comput Struct 87(11):680–690

    Article  Google Scholar 

  • Tse K, Chiu P, Lee H, Ho P (2011) Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J Biomech 44(5):827–836

    Article  Google Scholar 

  • Vergara C, Viscardi F, Antiga L, Luciani G (2012) Influence of bicuspid valve geometry on ascending aortic fluid dynamics: a parametric study. Artif Organs 36(4):368–378

    Article  Google Scholar 

  • Viscardi F, Vergara C, Antiga L, Merelli S, Veneziani A, Puppini G, Faggian G, Mazzucco A, Luciani G (2010) Comparative finite element model analysis of ascending aortic flow in bicuspid and tricuspid aortic valve. Artif Organs 34(12):1114–1120

    Article  Google Scholar 

  • Weinberg E, Kaazempur Mofrad M (2008) A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J Biomech 41(16):342–348

    Article  Google Scholar 

  • Wendell DC, Samyn MM, Cava JR, Ellwein LM, Krolikowski MM, Gandy KL, Pelech AN, Shadden SC, LaDisa JF (2013) Including aortic valve morphology in computational fluid dynamics simulations: initial findings and application to aortic coarctation. Med Eng Phys 35(6):723–735

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported the Italian MIUR PRIN12 project n. 201289A4LX. The numerical simulations have been performed at CINECA Consortium through the LISA Projects LI02p-FSIA2 and Lisa Project LI02p- LEScarot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vergara.

Appendix

Appendix

We provide here some technical details on the 2D CINE PC-MRI acquisition made for Patient 2 at the PC-slice. A 1.5 Tesla system (Magnetom Symphony, Siemens Medical Systems, Erlangen, Germany) has been used. The temporal resolution was characterized by 20 phases in one cardiac cycle with a pixel resolution of \(1.17 \times 1.17\) mm. Velocity encoding values were chosen to optimize the velocity map resolution with a value equal to \(150\) cm/s. The following parameters were also used: TE (echo time) = 6.4 ms; flip angle = \( 15^{\circ }\); slice thickness = 5 mm; acquisition matrix = \(256 \times 256\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonomi, D., Vergara, C., Faggiano, E. et al. Influence of the aortic valve leaflets on the fluid-dynamics in aorta in presence of a normally functioning bicuspid valve. Biomech Model Mechanobiol 14, 1349–1361 (2015). https://doi.org/10.1007/s10237-015-0679-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0679-8

Keywords

Navigation