Skip to main content
Log in

Does mechanical stimulation really protect the architecture of trabecular bone? A simulation study

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Although it is beyond doubt that mechanical stimulation is crucial to maintain bone mass, its role in preserving bone architecture is much less clear. Commonly, it is assumed that mechanics helps to conserve the trabecular network since an “accidental” thinning of a trabecula due to a resorption event would result in a local increase of load, thereby activating bone deposition there. However, considering that the thin trabecula is part of a network, it is not evident that load concentration happens locally on the weakened trabecula. The aim of this work was to clarify whether mechanical load has a protective role for preserving the trabecular network during remodeling. Trabecular bone is made dynamic by a remodeling algorithm, which results in a thickening/thinning of trabeculae with high/low strain energy density. Our simulations show that larger deviations from a regular cubic lattice result in a greater loss of trabeculae. Around lost trabeculae, the remaining trabeculae are on average thinner. More generally, thin trabeculae are more likely to have thin trabeculae in their neighborhood. The plausible consideration that a thin trabecula concentrates a higher amount of strain energy within itself is therefore only true when considering a single isolated trabecula. Mechano-regulated remodeling within a network-like architecture leads to local concentrations of thin trabeculae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams MA, Dolan P (1995) Recent advances in lumbar spinal mechanics and their clinical-significance. Clin Biomech 10(1):3–19

    Article  Google Scholar 

  • Binder K a H D (2010) Monte Carlo simulation in statistical physics: an introduction. Springer, New York

    Book  Google Scholar 

  • Burr DB (2002) Targeted and nontargeted remodeling. Bone 30(1):2–4

    Article  MathSciNet  Google Scholar 

  • Carretta R, Luisier B, Bernoulli D, Stussi E, Müller R, Lorenzetti S (2013) Novel method to analyze post-yield mechanical properties at trabecular bone tissue level. J Mech Behav Biomed Mater 20:6–18

    Article  Google Scholar 

  • Chavassieux PM, Arlot ME, Reda C, Wei L, Yates AJ, Meunier PJ (1997) Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest 100(6):1475–1480

    Article  Google Scholar 

  • Christen P, Ito K, Ellouz R, Boutroy S, Sornay-Rendu E, Chapurlat RD, van Rietbergen B (2014) Bone remodelling in humans is load-driven but not lazy. Nat Commun 5. doi:10.1038/ncomms5855

  • Dunlop J, Hartmann M, Bréchet Y, Fratzl P, Weinkamer R (2009) New suggestions for the mechanical control of bone remodeling. Calcified Tissue Int 85(1):45–54

    Article  Google Scholar 

  • Easley SK, Chang MT, Shindich D, Hernandez CJ, Keaveny TM (2012) Biomechanical effects of simulated resorption cavities in cancellous bone across a wide range of bone volume fractions. J Bone Miner Res 27(9):1927–1935

    Article  Google Scholar 

  • Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8):1263–1334

    Article  Google Scholar 

  • Frost HM (1987) Bone mass and the mechanostat—a proposal. Anat Rec 219(1):1–9

    Article  MathSciNet  Google Scholar 

  • Gerhard FA, Webster DJ, van Lenthe GH, Müller R (2009) In silico biology of bone modelling and remodelling: adaptation. Philos T R Soc A 367(1895):2011–2030

    Article  Google Scholar 

  • Gibson LJ (2005) Biomechanics of cellular solids. J Biomech 38(3):377–399

    Article  MathSciNet  Google Scholar 

  • Guo XE, Kim CH (2002) Mechanical consequence of trabecular bone loss and its treatment: a three-dimensional model simulation. Bone 30(2):404–411

    Article  Google Scholar 

  • Hartmann MA, Dunlop JWC, Bréchet YJM, Fratzl P, Weinkamer R (2011) Trabecular bone remodelling simulated by a stochastic exchange of discrete bone packets from the surface. J Mech Behav Biomed Mater 4(6):879–887

    Article  Google Scholar 

  • Hernandez CJ, Keaveny TM (2006) A biomechanical perspective on bone quality. Bone 39(6):1173–1181

    Article  Google Scholar 

  • Hildebrand T, Laib A, Müller R, Dequeker J, Ruegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14(7):1167–1174

    Article  Google Scholar 

  • Huiskes R (2000) If bone is the answer, then what is the question? J Anat 197:145–156

    Article  Google Scholar 

  • Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787):704–706

    Article  Google Scholar 

  • Jee WSS (2001) Bone mechanics handbook. CRC Press, Boca Raton

    Google Scholar 

  • Jensen KS, Mosekilde L, Mosekilde L (1990) A model of vertebral trabecular bone architecture and its mechanical-properties. Bone 11(6):417–423

    Article  Google Scholar 

  • Kabel J, Odgaard A, van Rietbergen B, Huiskes R (1999) Connectivity and the elastic properties of cancellous bone. Bone 24(2):115–120

    Article  Google Scholar 

  • Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3:307–333

    Article  Google Scholar 

  • Lambers FM, Koch K, Kuhn G, Ruffoni D, Weigt C, Schulte FA, Müller R (2013) Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates. Bone 55(2):325–334

    Article  Google Scholar 

  • Lambers FM, Schulte FA, Kuhn G, Webster DJ, Müller R (2011) Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry. Bone 49(6):1340–1350

    Article  Google Scholar 

  • Levchuk A, Zwahlen A, Weigt C, Lambers FM, Badilatti SD, Schulte FA, Kuhn G, Müller R (2014) The clinical biomechanics award 2012—presented by the European society of biomechanics: large scale simulations of trabecular bone adaptation to loading and treatment. Clin Biomech 29(4):355–362

    Article  Google Scholar 

  • Liu XS, Bevill G, Keaveny TM, Sajda P, Guo XE (2009) Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. J Biomech 42(3):249–256

    Article  Google Scholar 

  • Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM, Guo XE (2008) Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res 23(2):223–235

    Article  Google Scholar 

  • Luxner MH, Stampfl J, Pettermann HE (2005) Finite element modeling concepts and linear analyses of 3D regular open cell structures. J Mater Sci 40(22):5859–5866

    Article  Google Scholar 

  • Luxner MH, Stampfl J, Pettermann HE (2007) Numerical simulations of 3D open cell structures—influence of structural irregularities on elasto-plasticity and deformation localization. Int J Solids Struct 44(9):2990–3003

    Article  MATH  Google Scholar 

  • Luxner MH, Stampfl J, Pettermann HE (2009a) Nonlinear simulations on the interaction of disorder and defects in open cell structures. Comp Mater Sci 47(2):418–428

    Article  Google Scholar 

  • Luxner MH, Woesz A, Stampfl J, Fratzl P, Pettermann HE (2009b) A finite element study on the effects of disorder in cellular structures. Acta Biomater 5(1):381–390

    Article  Google Scholar 

  • Mulvihill BM, McNamara LM, Prendergast PJ (2008) Loss of trabeculae by mechano-biological means may explain rapid bone loss in osteoporosis. J R Soc Interface 5(27):1243–1253

    Article  Google Scholar 

  • Nazarian A, Stauber M, Zurakowski D, Snyder BD, Müller R (2006) The interaction of microstructure and volume fraction in predicting failure in cancellous bone. Bone 39(6):1196–1202

    Article  Google Scholar 

  • Parfitt AM (1994) Osteonal and hemi-osteonal remodeling—the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 55(3):273–286

    Article  Google Scholar 

  • Parfitt AM (2002) Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30(1):5–7

    Article  Google Scholar 

  • Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry—standardization of nomenclature, symbols, and units. J Bone Miner Res 2(6):595–610

    Article  Google Scholar 

  • Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498

    Article  Google Scholar 

  • Ruffoni D, Dunlop JWC, Fratzl P, Weinkamer R (2010) Effect of minimal defects in periodic cellular solids. Philos Mag 90(13):1807–1818

  • Ruffoni D, Müller R, van Lenthe GH (2012a) Mechanisms of reduced implant stability in osteoporotic bone. Biomech Model Mechan 11(3–4):313–323

    Article  Google Scholar 

  • Ruffoni D, Wirth AJ, Steiner JA, Parkinson IH, Müller R, van Lenthe GH (2012b) The different contributions of cortical and trabecular bone to implant anchorage in a human vertebra. Bone 50(3):733–738

    Article  Google Scholar 

  • Ruimerman R, Hilbers P, van Rietbergen B, Huiskes R (2005) A theoretical framework for strain-related trabecular bone maintenance and adaptation. J Biomech 38(4):931–941

    Article  Google Scholar 

  • Rusconi M, Valleriani A, Dunlop JWC, Kurths J, Weinkamer R (2012) Quantitative approach to the stochastics of bone remodeling. Epl Europhys Lett 97(2):28009

  • Saparin P, Scherf H, Hublin JJ, Fratzl P, Weinkamer R (2011) Structural adaptation of trabecular bone revealed by position resolved analysis of proximal femora of different primates. Anat Rec 294(1):55–67

    Article  Google Scholar 

  • Schulte FA, Ruffoni D, Lambers FM, Christen D, Webster DJ, Kuhn G, Muller R (2013a) Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. PLoS ONE 8(4):e62172

  • Schulte FA, Zwahlen A, Lambers FM, Kuhn G, Ruffoni D, Betts D, Webster DJ, Mueller R (2013b) Strain-adaptive in silico modeling of bone adaptation—a computer simulation validated by in vivo micro-computed tomography data. Bone 52(1):485–492

    Article  Google Scholar 

  • Seeman E, Delmas PD (2006) Mechanisms of disease—bone quality—the material and structural basis of bone strength and fragility. New Engl J Med 354(21):2250–2261

    Article  Google Scholar 

  • Smit TH, Burger EH (2000) Is BMU-coupling a strain-regulated phenomenon? A finite element analysis. J Bone Miner Res 15(2):301–307

    Article  Google Scholar 

  • Smit TH, Odgaard A, Schneider E (1997) Structure and function of vertebral trabecular bone. Spine 22(24):2823–2833

    Article  Google Scholar 

  • Stauber M, Müller R (2006) Age-related changes in trabecular bone microstructures: global and local morphometry. Osteoporosis Int 17(4):616–626

    Article  Google Scholar 

  • Stauber M, Rapillard L, van Lenthe GH, Zysset P, Müller R (2006) Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. J Bone Miner Res 21(4):586–595

    Article  Google Scholar 

  • Strogatz SH (2001) Nonlinear dynamics and chaos. Westview Press, Boulder

    Google Scholar 

  • Thomsen JS, Niklassen AS, Ebbesen EN, Bruel A (2013) Age-related changes of vertical and horizontal lumbar vertebral trabecular 3D bone microstructure is different in women and men. Bone 57(1):47–55

    Article  Google Scholar 

  • Tsubota K, Adachi T, Tomita Y (2002) Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state. J Biomech 35(12):1541–1551

    Article  Google Scholar 

  • van Lenthe GH, Stauber M, Müller R (2006) Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties. Bone 39(6):1182–1189

    Article  Google Scholar 

  • Vetter A, Witt F, Sander O, Duda GN, Weinkamer R (2012) The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules. Biomech Model Mechanobiol 11(1–2):147–160

    Article  Google Scholar 

  • Yeh OC, Keaveny TM (1999) Biomechanical effects of intraspecimen variations in trabecular architecture: a three-dimensional finite element study. Bone 25(2):223–228

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Ruffoni.

Appendices

Appendix A

Relationship between trabecular thickness and strain energy density frequency distributions

With \(T\) the thickness of a single trabecula having a Young’s modulus \(E\) and subjected to an axial load \(F\), the strain energy density SED can be written as:

$$\begin{aligned} \hbox {SED}(T)=g\left( T \right) =\frac{8}{\pi ^{2}}\frac{F^{2}}{E}\left( {\frac{1}{T}} \right) ^{4}. \end{aligned}$$
(A1)

Considering a collection of independent trabeculae and assuming that \(T\) has a Gaussian probability density function \(n_T \left( T \right) \) (blue curve, Fig. 2c) with mean value \(\mu \) and standard deviation \(\sigma \):

$$\begin{aligned} n_T \left( T \right) =\frac{1}{\sigma \sqrt{2\pi }}\hbox {exp}\left( {-\frac{\left( {T-\mu } \right) ^{2}}{2\sigma ^{2}}} \right) , \end{aligned}$$
(A2)

the probability density function of SED is calculated as (blue curve, Fig. 2d):

$$\begin{aligned}&\!\!\!f_S \left( {\hbox {SED}} \right) =n_T \left( {g^{-1}\left( {\hbox {SED}} \right) } \right) \left| {\frac{dg^{-1}\left( {\hbox {SED}} \right) }{d(\hbox {SED})}} \right| \nonumber \\&\quad =\frac{\gamma ^{1/4}}{4\sigma \sqrt{2\pi }}\left( {\frac{1}{\hbox {SED}}} \right) ^{5/4}\hbox {exp}\left\{ {-\frac{\left[ {\left( {\frac{\gamma }{\hbox {SED}}} \right) ^{1/4}-\mu } \right] ^{2}}{2\sigma ^{2}}} \right\} ,\nonumber \\ \end{aligned}$$
(A3)

where \(\gamma =\frac{8F^{2}}{\pi ^{2}E}\) .

Appendix B

1.1 Mechanical control of the remodeling of a single trabecula: recurrence relation

Considering one single trabecula loaded by a constant axial force \(F\) and characterized by a Young’s modulus \(E\), the relationship between the cross-sectional area \(A\) and the strain energy density SED at a discrete time point \(i\) is:

$$\begin{aligned} \hbox {SED}_i =\frac{F^{2}}{2E}\left( {\frac{1}{A_i }} \right) ^{2} . \end{aligned}$$
(B1)

According to the remodeling rule introduced in Fig. 2a and assuming linearity (i.e., SED remains smaller than 2 \({\hbox {SED}}_\mathrm{ref})\), the change in cross-sectional area \(\Delta A\) is given by:

$$\begin{aligned} \Delta A=\Delta A_\mathrm{max} \left( {\frac{\hbox {SED}}{\hbox {SED}_\mathrm{ref} }-1} \right) . \end{aligned}$$
(B2)

Hence, by inserting (B1) into (B2), the recurrence relation for the cross-sectional area reads:

$$\begin{aligned} A_{i+1} =A_i +\Delta A=A_i +\Delta A_\mathrm{max} \left( {\frac{F^{2}}{2E\,\mathrm{SED}_\mathrm{ref} }\frac{1}{A_i^2 }-1} \right) .\nonumber \\ \end{aligned}$$
(B3)

The additional normalization by the factor \(\Delta A_\mathrm{max}\) (for its definition see Method section) allows writing (B3) in a dimensionless form:

$$\begin{aligned} x_{i+1} =x_i +\hat{{\gamma }}\frac{1}{x_i^2 }-1, \end{aligned}$$
(B4)

with \(x_i =\frac{A_i }{\Delta A_\mathrm{max} }\) and \(\hat{{\gamma }}=\frac{F^{2}}{2E\,\mathrm{SED}_\mathrm{ref} }\frac{1}{\Delta A_\mathrm{max}^2 }\). The fixed points of a general recurrence relation \(x_{i+1} =f(x_i )\) are found by setting \(f\left( {x^{*}} \right) =x^{*}\) (Strogatz 2001), hence:

$$\begin{aligned} x^{*}=x^{*}+\hat{{\gamma }}\frac{1}{x^{*2}}-1, \end{aligned}$$
(B5)

resulting in

$$\begin{aligned} x^{*}=\pm \sqrt{\hat{{\gamma }}}. \end{aligned}$$
(B6)

The stability of the fix points (B6) can be then analyzed by looking at the first derivative of the recurrence relation (B4):

$$\begin{aligned} \lambda =f^{{\prime }}\left( {x^{*}} \right) =1-\frac{2}{\sqrt{\hat{{\gamma }}}}. \end{aligned}$$
(B7)

The model is unstable when \({\vert }{\lambda }{\vert }>1\), hence for \(0<\hat{{\gamma }}<1\). Assuming \(F \)= 1.5 N, \(E \)= 10 GPa and \({\Delta A}_\mathrm{max} = 0.0039\hbox { mm}^{2}\), the corresponding value of \({\hbox {SED}}_\mathrm{ref}\) above which the recurrence relation gives rise to oscillations in the cross-sectional area is \(7.4 \times 10^{6}\hbox { J/m}^{3}\) (Fig. 7).

Fig. 7
figure 7

Time evolution of the cross-sectional area of an individual trabecula having an initial thickness of 0.14 mm and remodeled according to the recurrence relation derived in Appendix 2 (Eq. (B7)) for three different values of \({\hbox {SED}}_\mathrm{ref}\). When \({\hbox {SED}}_\mathrm{ref}\) is well below the instability threshold (e.g., \({\hbox {SED}}_\mathrm{ref }=5 \times 10^{6}\, \hbox {J/m}^{3} < 7.4 \times 10^{6}\hbox { J/m}^{3})\), the trabecula can be controlled by a mechano-regulated remodeling process. If \({\hbox {SED}}_\mathrm{ref}\) approaches the instability threshold (e.g., \({\hbox {SED}}_\mathrm{ref }= 7 \times 10^{6}\hbox { J/m}^{3})\), despite some initial oscillations, the cross-sectional area still converges to a steady state. For values of \({\hbox {SED}}_\mathrm{ref}\) above the instability threshold (e.g., \({\hbox {SED}}_\mathrm{ref }= 9 \times 10^{6} \hbox { J/m}^{3})\), the cross-sectional area oscillates without approaching a steady state

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurer, M.M., Weinkamer, R., Müller, R. et al. Does mechanical stimulation really protect the architecture of trabecular bone? A simulation study. Biomech Model Mechanobiol 14, 795–805 (2015). https://doi.org/10.1007/s10237-014-0637-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-014-0637-x

Keywords

Navigation