Skip to main content
Log in

A hybrid approach to the computational aeroacoustics of human voice production

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The aeroacoustic mechanisms in human voice production are complex coupled processes that are still not fully understood. In this article, a hybrid numerical approach to analyzing sound generation in human voice production is presented. First, the fluid flow problem is solved using a parallel finite-volume computational fluid dynamics (CFD) solver on a fine computational mesh covering the larynx. The CFD simulations are run for four geometrical configurations: both with and without false vocal folds, and with fixed convergent or convergent–divergent motion of the medial vocal fold surface. Then the aeroacoustic sources and propagation of sound waves are calculated using Lighthill’s analogy or acoustic perturbation equations on a coarse mesh covering the larynx, vocal tract, and radiation region near the mouth. Aeroacoustic sound sources are investigated in the time and frequency domains to determine their precise origin and correlation with the flow field. The problem of acoustic wave propagation from the larynx and vocal tract into the free field is solved using the finite-element method. Two different vocal-tract shapes are considered and modeled according to MRI vocal-tract data of the vowels /i/ and /u/. The spectra of the radiated sound evaluated from acoustic simulations show good agreement with formant frequencies known from human subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Agarwal M, Scherer R, Hollien H (2003) The false vocal folds: shape and size in frontal view during phonation based on laminagraphic tracings. J Voice 17(2):97–113. doi:10.1016/S0892-1997

    Article  Google Scholar 

  • Agarwal M (2004) The false vocal folds and their effect on translaryngeal airflow resistance. Ph.D. thesis, Bowling Green State University

  • Alipour F, Jaiswal S, Finnegan E (2007) Aerodynamic and acoustic effects of false vocal folds and epiglottis in excised larynx models. Ann Otol Rhinol Laryngol 116(2):135–144

    Article  Google Scholar 

  • Alipour F, Brucker C, D Cook D, Gommel A, Kaltenbacher M, Mattheus W, Mongeau L, Nauman E, Schwarze R, Tokuda I, Zörner S (2011) Mathematical models and numerical schemes for the simulation of human phonation. Curr Bioinform 6(3):323–343. doi:10.2174/157489311796904655

    Article  Google Scholar 

  • Bae Y, Moon YJ (2008) Computation of phonation aeroacoustics by an INS/PCE splitting method. Comput Fluids 37(10):1332–1343. doi:10.1016/j.compfluid.2007.12.002

    Article  MATH  Google Scholar 

  • Bailly C, Juvé D (2000) Numerical solution of acoustic propagation problems using linearized Euler equations. AIAA J 38:22–29. doi:10.2514/2.949

    Article  Google Scholar 

  • Bailly L, Pelorson X, Henrich N, Ruty N (2008) Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation. J Acoust Soc Am 124(5):3296–3308. doi:10.1121/1.2977740

    Article  Google Scholar 

  • Boessenecker A, Berry DA, Lohscheller J, Eysholdt U, Döllinger M (2007) Mucosal wave properties of a human vocal fold. Acta Acust United Acust 93(5):815–823

    Google Scholar 

  • Chevalier C, Pellegrini F (2008) PT-scotch: A tool for efficient parallel graph ordering. Parallel Comput 34(6–8):318–331. doi:10.1016/j.parco.2007.12.001

    Article  MathSciNet  Google Scholar 

  • Ewert R, Schröder W (2003) Acoustic perturbation equations based on flow decomposition via source filtering. J Comput Phys 188(2):365–398. doi:10.1016/S0021-9991(03)00168-2

    Article  MATH  MathSciNet  Google Scholar 

  • Feistauer M, Hasnedlová-Prokopová J, Horáček J, Kosík A, Kučera V (2013) DGFEM for dynamical systems describing interaction of compressible fluid and structures. J Comput Appl Math 254:17–30. doi:10.1016/j.cam.2013.03.028

    Article  MATH  MathSciNet  Google Scholar 

  • Ferziger JH, Peric M (2002) Computational methods for fluid dynamics. Springer, Berlin. doi:10.1007/978-3-642-56026-2

    Book  MATH  Google Scholar 

  • Geuzaine C, Remacle JF (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  MATH  MathSciNet  Google Scholar 

  • Hüppe A (2014) Spectral finite elements for acoustic field computation (Measurement-, Actuator-, and Simulation-technology). Ph.D. thesis, Shaker Verlag GmbH, doi:10.2370/9783844024609

  • Hüppe A, Kaltenbacher M (2012a) Spectral finite elements for computational aeroacoustics using acoustic perturbation equations. J Comput Acoust 20(02):1240,005 1–13, doi:10.1142/S0218396X1240005X

  • Hüppe A, Kaltenbacher M (2012b) Stable matched layer for the acoustic conservation equations in the time domain. J Comput Acoust 20(01):1250,004. doi:10.1142/S0218396X11004511

  • Jasak H (1996) Error analysis and estimation for the finite volume method with applications to fluid flows. Ph.D. thesis, Imperial College of Science, Technology and Medicine, London

  • Kaltenbacher B, Kaltenbacher M, Sim I (2013) A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics. J Comput Phys 235(0):407–422. doi:10.1016/j.jcp.2012.10.016

    Article  MATH  MathSciNet  Google Scholar 

  • Kaltenbacher M (2007) Numerical simulation of mechatronic sensors and actuators. Springer, Berlin. doi:10.1007/978-3-540-71360-9

    Google Scholar 

  • Kaltenbacher M, Escobar M, Ali I, Becker S (2010) Numerical simulation of flow-induced noise using LES/SAS and Lighthill’s acoustics analogy. Int J Numer Methods Fluids 63(9):1103–1122. doi:10.1002/fld.2123

    MATH  MathSciNet  Google Scholar 

  • Kelleher J, Siegmund T, Du M, Naseri E, Chan R (2013) Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria. Biomech Model Mechanobiol 12(3):555–567. doi:10.1007/s10237-012-0425-4

    Article  Google Scholar 

  • Li S, Wan M, Wang S (2007) The effects of the false vocal fold gaps in a model of the larynx on pressures distributions and flows. Digital human modeling, Springer, Berlin Heidelberg, pp. 147–156, doi:10.1007/978-3-540-73321-8_18

  • Lighthill M (1952) On sound generated aerodynamically. I. General theory. Proc R Soc Lond Ser A Math Phys Sci 211(1107):564–587. doi:10.1098/rspa.1952.0060

    Article  MATH  MathSciNet  Google Scholar 

  • Link G, Kaltenbacher M, Breuer M, Döllinger M (2009) A 2D finite-element scheme for fluid-solid-acoustic interactions and its application to human phonation. Comput Methods Appl Mech Eng 198:3321–3334. doi:10.1016/j.cma.2009.06.009

    Article  MATH  Google Scholar 

  • McGowan R (1988) An aeroacoustic approach to phonation. J Acoust Soc Am 83(2):696–704. doi:10.1121/1.396165

    Article  Google Scholar 

  • Mittal R, Erath BD, Plesniak MW (2013) Fluid dynamics of human phonation and speech. Annu Rev Fluid Mech 45(1):437–467. doi:10.1146/annurev-fluid-011212-140636

    Article  MathSciNet  Google Scholar 

  • Pickup BA, Thomson SL (2009) Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models. J Biomech 42(14):2219–2225. doi:10.1016/j.jbiomech.2009.06.039

    Article  Google Scholar 

  • Powell A (1964) Theory of vortex sound. J Acoust Soc Am 36(1):177–195. doi:10.1121/1.1918931

    Article  Google Scholar 

  • Rivera O, Fürlinger K, Kranzlmüller D (2011) Investigating the scalability of OpenFOAM for the solution of transport equations and large eddy simulations. In: Proceedings of the 11th international conference on algorithms and architectures for parallel processing—Part II:121–130

  • Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener Comput Syst 20(3):475–487. doi:10.1016/j.future.2003.07.011

    Article  Google Scholar 

  • Scherer R, Shinwari D, Witt KD, Zhang C, Kucinschi B, Afjeh A (2001) Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. J Acoust Soc Am 109(4):1616–1630. doi:10.1121/1.1333420

    Article  Google Scholar 

  • Schroeder W, Martin K (2004) The visualization toolkit. In: Hansen CD and Johnson CR (eds) Elsevier http://www.kitware.com/publications/item/view/958

  • Seo JH, Mittal R (2011) A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries. J Comput Phys 230(4):1000–1019. doi:10.1016/j.jcp.2010.10.017

    Article  MATH  MathSciNet  Google Scholar 

  • Šidlof P, Švec JG, Horáček J, Veselý J, Klepáček I, Havlík R (2008) Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production. J Biomech 41(5):985–995. doi:10.1016/j.jbiomech.2007.12.016

    Article  Google Scholar 

  • Šidlof P, Doaré O, Cadot O, Chaigne A (2011) Measurement of flow separation in a human vocal folds model. Exp Fluids 51(1):123–136. doi:10.1007/s00348-010-1031-9

    Article  Google Scholar 

  • Šidlof P, Horáček J, Řidký V (2013) Parallel CFD simulation of flow in a 3D model of vibrating human vocal folds. Comput Fluids 80:290–300. doi:10.1016/j.compfluid.2012.02.005

    Article  MATH  MathSciNet  Google Scholar 

  • Šidlof P, Zörner S, Hüppe A (2013a) Numerical simulation of flow-induced sound in human voice production. Procedia Eng. 61:333–340. doi:10.1016/j.proeng.2013.08.024

  • Story BH, Titze I, Hoffman EA (1996) Vocal tract area functions from magnetic resonance imaging. J Acoust Soc Am 100(1):537–554. doi:10.1121/1.415960

    Article  Google Scholar 

  • Tian FB, Dai H, Luo H, Doyle JF, Rousseau B (2014) Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems. J Comput Phys 258:451–469. doi:10.1016/j.jcp.2013.10.047

    Article  MathSciNet  Google Scholar 

  • Titze IR (2006) The Myoelastic aerodynamic theory of phonation, 1st edn. National Center for Voice and Speech, Denver

  • Zhang C, Zhao W, Frankel S, Mongeau L (2002) Computational aeroacoustics of phonation, Part II: effects of flow parameters and ventricular folds. J Acoust Soc Am 112(5 Pt 1):2147–2154. doi:10.1121/1.1506694

    Article  Google Scholar 

  • Zhao W, Zhang C, Frankel S, Mongeau L (2002) Computational aeroacoustics of phonation, Part I: computational methods and sound generation mechanisms. J Acoust Soc Am 112(5 Pt 1):2134–2146. doi:10.1121/1.1506693

  • Zheng X, Bielamowicz S, Luo H, Mittal R (2009) A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation. Ann Biomed Eng 37(3):625–642. doi:10.1007/s10439-008-9630-9

  • Zörner S, Kaltenbacher M, Lerch R, Sutor A, Döllinger M (2010) Measurement of the elasticity modulus of soft tissues. J Biomech 43(8):1540–1545. doi:10.1016/j.jbiomech.2010.01.035

    Article  Google Scholar 

  • Zörner S, Kaltenbacher M, Döllinger M (2013) Investigation of prescribed movement in fluid-structure interaction simulation for the human phonation process. Comput Fluids 86:133–140. doi:10.1016/j.compfluid.2013.06.031

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the Czech Science Foundation, Project P101/11/0207 and by the Austrian Science Fund under Grant I 532-N20. The support of the Czech and Austrian agencies for international cooperation and mobility within ICM OeAD – MŠMT (Project CZ 09/2013–7AMB13AT006), which facilitates the effective cooperation of the authors, is also gratefully acknowledged. The CFD simulations were run at the facilities of the Supercomputer Center of the CTU in Prague, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Šidlof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šidlof, P., Zörner, S. & Hüppe, A. A hybrid approach to the computational aeroacoustics of human voice production. Biomech Model Mechanobiol 14, 473–488 (2015). https://doi.org/10.1007/s10237-014-0617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-014-0617-1

Keywords

Navigation