Skip to main content
Log in

Extracellular matrix and the mechanics of large artery development

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The large, elastic arteries, as their name suggests, provide elastic distention and recoil during the cardiac cycle in vertebrate animals. The arteries are distended from the pressure of ejecting blood during the active contraction of the left ventricle (LV) during systole and recoil to their original dimensions during relaxation of the LV during diastole. The cyclic distension occurs with minimal energy loss, due to the elastic properties of one of the major structural extracellular matrix (ECM) components, elastin. The maximum distension is limited to prevent damage to the artery by another major ECM component, collagen. The mix of ECM components in the wall largely determines the passive mechanical behavior of the arteries and the subsequent load on the heart during systole. While much research has focused on initial artery formation, there has been less attention on the continuing development of the artery to produce the mature composite wall complete with endothelial cells (ECs), smooth muscle cells (SMCs), and the necessary mix of ECM components for proper cardiovascular function. This review focuses on the physiology of large artery development, including SMC differentiation and ECM production. The effects of hemodynamic forces and ECM deposition on the evolving arterial structure and function are discussed. Human diseases and mouse models with genetic mutations in ECM proteins that affect large artery development are summarized. A review of constitutive models and growth and remodeling theories is presented, along with future directions to improve understanding of ECM and the mechanics of large artery development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboulhosn J, Child JS (2006) Left ventricular outflow obstruction. Circulation 114(22): 2412–2422

    Google Scholar 

  • Alford PW, Humphrey JD, Taber LA (2008) Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents. Biomech Model Mechanobiol 7(4): 245–262. doi:10.1007/s10237-007-0101-2

    Google Scholar 

  • Alford PW, Taber LA (2008) Computational study of growth and remodelling in the aortic arch. Comput Methods Biomech Biomed Eng 11(5): 525–538. doi:10.1080/10255840801930710

    Google Scholar 

  • Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J Off J Jpn Circ Soc 73(11): 1983–1992

    Google Scholar 

  • Asada H, Paszkowiak J, Teso D, Alvi K, Thorisson A, Frattini JC, Kudo FA, Sumpio BE, Dardik A (2005) Sustained orbital shear stress stimulates smooth muscle cell proliferation via the extracellular signal-regulated protein kinase 1/2 pathway. J Vasc Surg 42(4): 772–780. doi:10.1016/j.jvs.2005.05.046

    Google Scholar 

  • Baek S, Gleason RL, Rajagopal KR, Humphrey JD (2007a) Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput Methods Appl Mech Eng 196(31–32): 3070–3078

    MathSciNet  MATH  Google Scholar 

  • Baek S, Valentin A, Humphrey JD (2007b) Biochemomechanics of cerebral vasospasm and its resolution: II. Constitutive relations and model simulations. Ann Biomed Eng 35(9): 1498–1509. doi:10.1007/s10439-007-9322-x

    Google Scholar 

  • Beloussov LV (1998) The dynamic architecture of a developing organism: an interdisciplinary approach to the development of organisms. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bendeck MP, Langille BL (1991) Rapid accumulation of elastin and collagen in the aortas of sheep in the immediate perinatal period. Circ Res 69(4): 1165–1169

    Google Scholar 

  • Berry CL, Greenwald SE (1976) Effects of hypertension on the static mechanical properties and chemical composition of the rat aorta. Cardiovasc Res 10(4): 437–451

    Google Scholar 

  • Berry CL, Looker T, Germain J (1972) Nucleic acid and scleroprotein content of the developing human aorta. J Pathol 108(4): 265–274. doi:10.1002/path.1711080402

    Google Scholar 

  • Boo YC, Jo H (2003) Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol 285(3): C499–C508. doi:10.1152/ajpcell.00122.2003

    Google Scholar 

  • Callewaert B, Renard M, Hucthagowder V, Albrecht B, Hausser I, Blair E, Dias C, Albino A, Wachi H, Sato F, Mecham R, Loeys B, Coucke P, De Paepe A, Urban Z (2011) New insights into the pathogenesis of autosomal-dominant cutis laxa with report of five ELN mutations. Hum Mutat 32(4): 445–455. doi:10.1002/humu.21462

    Google Scholar 

  • Cardamone L, Valentin A, Eberth JF, Humphrey JD (2010) Modelling carotid artery adaptations to dynamic alterations in pressure and flow over the cardiac cycle. Math Med Biol. doi:10.1093/imammb/dqq001

  • Carta L, Pereira L, Arteaga-Solis E, Lee-Arteaga SY, Lenart B, Starcher B, Merkel CA, Sukoyan M, Kerkis A, Hazeki N, Keene DR, Sakai LY, Ramirez F (2006) Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J Biol Chem 281(12): 8016–8023

    Google Scholar 

  • Carta L, Wagenseil JE, Knutsen RH, Mariko B, Faury G, Davis EC, Starcher B, Mecham RP, Ramirez F (2009) Discrete contributions of elastic fiber components to arterial development and mechanical compliance. Arterioscler Thromb Vasc Biol 29(12): 2083–2089. doi:10.1161/ATVBAHA.109.193227

    Google Scholar 

  • Cheng JK, Mecham RP, Wagenseil JE (2012) A fiber-based constitutive model predicts changes in amount and organization of matrix proteins with development and disease in the mouse aorta. Biomech Model Mechanobiol (In revision)

  • Civelek M, Ainslie K, Garanich JS, Tarbell JM (2002) Smooth muscle cells contract in response to fluid flow via a Ca2+-independent signaling mechanism. J Appl Physiol 93(6): 1907–1917. doi:10.1152/japplphysiol.00988.2001

    Google Scholar 

  • Clark ER (1918) Studies on the growth of blood-vessels in the tail of the frog larva—by observation and experiment on the living animal. Am J Anat 23: 37–88

    Google Scholar 

  • Cliff WJ (1967) The aortic tunica media in growing rats studied with the electron microscope. Lab Invest 17(6): 599–615

    Google Scholar 

  • Cowin SC (1996) Strain or deformation rate dependent finite growth in soft tissues. J Biomech 29(5): 647–649

    Google Scholar 

  • Dasouki M, Markova D, Garola R, Sasaki T, Charbonneau N, Sakai L, Chu M (2007) Compound heterozygous mutations in fibulin-4 causing neonatal lethal pulmonary artery occlusion, aortic aneurysm, arachnodactyly, and mild cutis laxa. Am J Med Genet A 143(22): 2635–2641. doi:10.1002/ajmg.a.31980

    Google Scholar 

  • Davis EC (1995) Elastic lamina growth in the developing mouse aorta. J Histochem Cytochem 43(11): 1115–1123

    Google Scholar 

  • Davis NP, Han HC, Wayman B, Vito R (2005) Sustained axial loading lengthens arteries in organ culture. Ann Biomed Eng 33(7): 867–877

    Google Scholar 

  • DeRuiter MC, Poelmann RE, VanMunsteren JC, Mironov V, Markwald RR, Gittenberger-de Groot AC (1997) Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 80(4): 444–451

    Google Scholar 

  • Dewey CF Jr., Bussolari SR, Gimbrone MA Jr., Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103(3): 177–185

    Google Scholar 

  • Dietz HC, Loeys B, Carta L, Ramirez F (2005) Recent progress towards a molecular understanding of Marfan syndrome. Am J Med Genet C Semin Med Genet 139(1): 4–9. doi:10.1002/ajmg.c.30068

    Google Scholar 

  • Dobrin PB (1973) Influence of initial length on length-tension relationship of vascular smooth muscle. Am J Physiol 225(3): 664–670

    Google Scholar 

  • Dobrin PB (1997) Chapter 3: physiology and pathophysiology of blood vessels. In: Sidawy ANSB, DePalma RG (eds) The basic science of vascular disease. Futura Publishing, New York, pp 69–105

    Google Scholar 

  • Drake CJ (2003) Embryonic and adult vasculogenesis. Birth Defects Res C Embryo Today 69(1): 73–82. doi:10.1002/bdrc.10003

    Google Scholar 

  • Durante W, Liao L, Reyna SV, Peyton KJ, Schafer AI (2000) Physiological cyclic stretch directs L-arginine transport and metabolism to collagen synthesis in vascular smooth muscle. Faseb J 14(12): 1775–1783

    Google Scholar 

  • Eberth JF, Taucer AI, Wilson E, Humphrey JD (2009) Mechanics of carotid arteries in a mouse model of Marfan Syndrome. Ann Biomed Eng 37(6): 1093–1104. doi:10.1007/s10439-009-9686-1

    Google Scholar 

  • Effmann EL, Whitman SA, Smith BR (1986) Aortic arch development. Radiographics 6(6): 1065–1089

    Google Scholar 

  • Ekstrand J, Razuvaev A, Folkersen L, Roy J, Hedin U (2010) Tissue factor pathway inhibitor-2 is induced by fluid shear stress in vascular smooth muscle cells and affects cell proliferation and survival. J Vasc Surg 52(1): 167–175. doi:10.1016/j.jvs.2010.02.282

    Google Scholar 

  • Faury G, Maher GM, Li DY, Keating MT, Mecham RP, Boyle WA (1999) Relation between outer and luminal diameter in cannulated arteries. Am J Physiol 277(5 Pt 2): H1745–H1753

    Google Scholar 

  • Faury G, Pezet M, Knutsen RH, Boyle WA, Heximer SP, McLean SE, Minkes RK, Blumer KJ, Kovacs A, Kelly DP, Li DY, Starcher B, Mecham RP (2003) Developmental adaptation of the mouse cardiovascular system to elastin haploinsufficiency. J Clin Invest 112(9): 1419–1428

    Google Scholar 

  • Fonck E, Prod’hom G, Roy S, Augsburger L, Rufenacht DA, Stergiopulos N (2007) Effect of elastin degradation on carotid wall mechanics as assessed by a constituent-based biomechanical model. Am J Physiol Heart Circ Physiol 292(6): H2754–H2763. doi:10.1152/ajpheart.01108.2006

    Google Scholar 

  • Francke U, Furthmayr H (1994) Marfan’s syndrome and other disorders of fibrillin. N Engl J Med 330(19): 1384–1385. doi:10.1056/nejm199405123301911

    Google Scholar 

  • Frid MG, Kale VA, Stenmark KR (2002) Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circ Res 90(11): 1189– 1196

    Google Scholar 

  • Fridez P, Rachev A, Meister JJ, Hayashi K, Stergiopulos N (2001) Model of geometrical and smooth muscle tone adaptation of carotid artery subject to step change in pressure. Am J Physiol Heart Circ Physiol 280(6): H2752–H2760

    Google Scholar 

  • Fridez P, Zulliger M, Bobard F, Montorzi G, Miyazaki H, Hayashi K, Stergiopulos N (2003) Geometrical, functional, and histomorphometric adaptation of rat carotid artery in induced hypertension. J Biomech 36(5): 671–680

    Google Scholar 

  • Fung YC (1970) Mathematical representation of the mechanical properties of the heart muscle. J Biomech 3(4): 381–404

    Google Scholar 

  • Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol 237(5): H620–H631

    Google Scholar 

  • Gerrity RG, Cliff WJ (1975) The aortic tunica media of the developing rat. I. Quantitative stereologic and biochemical analysis. Lab Invest 32(5): 585–600

    Google Scholar 

  • Gestrelius S, Borgstrom P (1986) A dynamic model of smooth muscle contraction. Biophys J 50(1): 157–169. doi:10.1016/S0006-3495(86)83448-8

    Google Scholar 

  • Gieni RS, Hendzel MJ (2008) Mechanotransduction from the ECM to the genome: are the pieces now in place?. J Cell Biochem 104(6): 1964–1987. doi:10.1002/jcb.21364

    Google Scholar 

  • Gleason RL, Dye WW, Wilson E (2008) Quantification of the mechanical behavior of carotid arteries from wild-type, dystrophin-deficient, and sarcoglycan-δ knockout mice. J Biomech 41(15): 3213–3218. doi:10.1016/j.jbiomech.2008.08.012.Quantification

    Google Scholar 

  • Gleason RL, Humphrey JD (2004) A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J Vasc Res 41(4): 352–363

    Google Scholar 

  • Gleason RL, Taber LA, Humphrey JD (2004) A 2-D model of flow-induced alterations in the geometry, structure and properties of carotid arteries. J Biomech Eng 126: 371–381

    Google Scholar 

  • Greenwald SE (2007) Ageing of the conduit arteries. J pathol 211(2): 157–172. doi:10.1002/path.2101

    Google Scholar 

  • Haga M, Yamashita A, Paszkowiak J, Sumpio BE, Dardik A (2003) Oscillatory shear stress increases smooth muscle cell proliferation and Akt phosphorylation. J Vasc Surg 37(6): 1277–1284

    Google Scholar 

  • Hai CM, Murphy RA (1988) Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am J Physiol 254(1 Pt 1): C99–C106

    Google Scholar 

  • Hayenga HN, Thorne BC, Peirce SM, Humphrey JD (2011) Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation. Ann Biomed Eng 39(11): 2669–2682. doi:10.1007/s10439-011-0363-9

    Google Scholar 

  • Hedin U, Bottger BA, Forsberg E, Johansson S, Thyberg J (1988) Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol 107(1): 307–319

    Google Scholar 

  • Hill AV (1938) The heat of shortening and dynamic constants of muscle. Proc R Soc Lond B 126: 136–195. doi:10.1098/rsp.1938.0050

    Google Scholar 

  • Hirano E, Knutsen RH, Sugitani H, Ciliberto CH, Mecham RP (2007) Functional rescue of elastin insufficiency in mice by the human elastin gene: implications for mouse models of human disease. Circ Res 101(5): 523–531

    Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(1–3): 1–48

    MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2004) Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. J Biomech Eng Trans ASME 126(2): 264–275. doi:10.1115/1.1695572

    Google Scholar 

  • Holzapfel GA, Gasser TC, Stadler M (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech A Solids 21(3): 441–463

    MATH  Google Scholar 

  • Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries. Proc R Soc A Math Phys Eng Sci 466(2118): 1551–1596

    MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 289(5): H2048–H2058. doi:10.1152/ajpheart.00934.2004

    Google Scholar 

  • Holzapfel GA, Weizsacker HW (1998) Biomechanical behavior of the arterial wall and its numerical characterization. Comput Biol Med 28(4): 377–392

    Google Scholar 

  • Hsieh HJ, Li NQ, Frangos JA (1991) Shear stress increases endothelial platelet-derived growth factor mRNA levels. Am J Physiol 260(2 Pt 2): H642–H646

    Google Scholar 

  • Hsu FH (1968) The influences of mechanical loads on the form of a growing elastic body. J Biomech 1(4): 303–311

    Google Scholar 

  • Hu JJ, Baek S, Humphrey JD (2007) Stress–strain behavior of the passive basilar artery in normotension and hypertension. J Biomech 40(11): 2559–2563

    Google Scholar 

  • Hu Q, Loeys BL, Coucke PJ, De Paepe A, Mecham RP, Choi J, Davis EC, Urban Z (2006) Fibulin-5 mutations: mechanisms of impaired elastic fiber formation in recessive cutis laxa. Hum Mol Genet 15(23): 3379–3386

    Google Scholar 

  • Huang C, Sheikh F, Hollander M, Cai C, Becker D, Chu PH, Evans S, Chen J (2003) Embryonic atrial function is essential for mouse embryogenesis, cardiac morphogenesis and angiogenesis. Development 130(24): 6111–6119. doi:10.1242/dev.00831

    Google Scholar 

  • Huang Y, Guo X, Kassab GS (2006) Axial nonuniformity of geometric and mechanical properties of mouse aorta is increased during postnatal growth. Am J Physiol Heart Circ Physiol 290(2): H657–H664

    Google Scholar 

  • Hucthagowder V, Sausgruber N, Kim K, Angle B, Marmorstein L, Urban Z (2006) Fibulin-4: a novel gene for an autosomal recessive cutis laxa syndrome. Am J Hum Genet 78(6): 1075–1080. doi:10.1086/504304

    Google Scholar 

  • Humphrey JD (1995) Mechanics of the arterial wall: review and directions. Crit Rev Biomed Eng 23(1–2): 1–162

    Google Scholar 

  • Humphrey JD (2001) Stress, strain, and mechanotransduction in cells. J Biomech Eng 123(6): 638–641

    Google Scholar 

  • Humphrey JD, Eberth JF, Dye WW, Gleason RL (2009) Fundamental role of axial stress in compensatory adaptations by arteries. J Biomech 42(1): 1–8. doi:10.1016/j.jbiomech.2008.11.011

    Google Scholar 

  • Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci 12(3): 407–430

    MathSciNet  MATH  Google Scholar 

  • Humphrey JD, Rajagopal KR (2003) A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomech Model Mechanobiol 2(2): 109–126

    Google Scholar 

  • Hungerford JE, Little CD (1999) Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J Vasc Res 36(1): 2–27

    Google Scholar 

  • Hungerford JE, Owens GK, Argraves WS, Little CD (1996) Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers. Dev Biol 178(2): 375–392

    Google Scholar 

  • Ishiwata T, Nakazawa M, Pu WT, Tevosian SG, Izumo S (2003) Developmental changes in ventricular diastolic function correlate with changes in ventricular myoarchitecture in normal mouse embryos. Circ Res 93(9): 857–865

    Google Scholar 

  • Jackson ZS, Dajnowiec D, Gotlieb AI, Langille BL (2005) Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler Thromb Vasc Biol 25(5): 957–962

    Google Scholar 

  • Jackson ZS, Gotlieb AI, Langille BL (2002) Wall tissue remodeling regulates longitudinal tension in arteries. Circ Res 90(8): 918– 925

    Google Scholar 

  • Ji RP, Phoon CK, Aristizabal O, McGrath KE, Palis J, Turnbull DH (2003) Onset of cardiac function during early mouse embryogenesis coincides with entry of primitive erythroblasts into the embryo proper. Circ Res 92(2): 133–135

    Google Scholar 

  • Jones EA (2011) Mechanical factors in the development of the vascular bed. Respir Physiol Neurobiol 178(1): 59–65. doi:10.1016/j.resp.2011.03.026

    Google Scholar 

  • Jones EA, le Noble F, Eichmann A (2006) What determines blood vessel structure? Genetic prespecification vs. hemodynamics. Physiol (Bethesda) 21: 388–395. doi:10.1152/physiol.00020.2006

    Google Scholar 

  • Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, Sakai LY, Dietz HC (2004) Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest 114(2): 172–181. doi:10.1172/JCI20641

    Google Scholar 

  • Katsumi A, Milanini J, Kiosses WB, del Pozo MA, Kaunas R, Chien S, Hahn KM, Schwartz MA (2002) Effects of cell tension on the small GTPase Rac. J Cell Biol 158(1): 153–164

    Google Scholar 

  • Kelleher CM, McLean SE, Mecham RP (2004) Vascular extracellular matrix and aortic development. Curr Top Dev Biol 62: 153–188

    Google Scholar 

  • Kozel BA, Rongish BJ, Czirok A, Zach J, Little CD, Davis EC, Knutsen RH, Wagenseil JE, Levy MA, Mecham RP (2006) Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters. J Cell Physiol 207(1): 87–96

    Google Scholar 

  • Kuo CT, Veselits ML, Barton KP, Lu MM, Clendenin C, Leiden JM (1997) The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 11(22): 2996–3006

    Google Scholar 

  • Langille BL, Adamson SL (1981) Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice. Circ Res 48(4): 481–488

    Google Scholar 

  • Laurindo FR, Pedro de MA, Barbeiro HV, Pileggi F, Carvalho MH, Augusto O, da Luz PL (1994) Vascular free radical release. Ex vivo and in vivo evidence for a flow-dependent endothelial mechanism. Circ Res 74(4): 700–709

    Google Scholar 

  • le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R, Breant C, Fleury V, Eichmann A (2004) Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131(2): 361–375. doi:10.1242/dev.00929

    Google Scholar 

  • Le V, Knutsen R, Mecham R, Wagenseil J (2011) Decreased aortic diameter and compliance precedes blood pressure increases in postnatal development of elastin-insufficient mice. Am J Physiol Heart Circ Physiol 301(1): H221–H229. doi:10.1152/ajpheart.00119.2011

    Google Scholar 

  • Lee AA, Graham DA, Cruz SD, Ratcliffe A, Karlon WJ (2002) Fluid shear stress-induced alignment of cultured vascular smooth muscle cells. J Biomech Eng 124(1): 37–43

    Google Scholar 

  • Leung DY, Glagov S, Mathews MB (1977) Elastin and collagen accumulation in rabbit ascending aorta and pulmonary trunk during postnatal growth. Correlation of cellular synthetic response with medial tension. Circ Res 41(3): 316–323

    Google Scholar 

  • Li DY, Faury G, Taylor DG, Davis EC, Boyle WA, Mecham RP, Stenzel P, Boak B, Keating MT (1998) Novel arterial pathology in mice and humans hemizygous for elastin. J Clin Invest 102(10): 1783–1787

    Google Scholar 

  • Li DY, Toland AE, Boak BB, Atkinson DL, Ensing GJ, Morris CA, Keating MT (1997) Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Hum Mol Genet 6(7): 1021–1028

    Google Scholar 

  • Li W, Chen Q, Mills I, Sumpio BE (2003) Involvement of S6 kinase and p38 mitogen activated protein kinase pathways in strain-induced alignment and proliferation of bovine aortic smooth muscle cells. J Cell Physiol 195(2): 202–209

    Google Scholar 

  • Liu X, Wu H, Byrne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci USA 94(5): 1852–1856

    Google Scholar 

  • Loeys B, Van Maldergem L, Mortier G, Coucke P, Gerniers S, Naeyaert JM, De Paepe A (2002) Homozygosity for a missense mutation in fibulin-5 (FBLN5) results in a severe form of cutis laxa. Hum Mol Genet 11(18): 2113–2118

    Google Scholar 

  • Lohler J, Timpl R, Jaenisch R (1984) Embryonic lethal mutation in mouse collagen I gene causes rupture of blood vessels and is associated with erythropoietic and mesenchymal cell death. Cell 38(2): 597–607

    Google Scholar 

  • Lotery A, Baas D, Ridley C, Jones R, Klaver C, Stone E, Nakamura T, Luff A, Griffiths H, Wang T, Bergen A, Trump D (2006) Reduced secretion of fibulin 5 in age-related macular degeneration and cutis laxa. Hum Mutat 27(6): 568–574. doi:10.1002/humu.20344

    Google Scholar 

  • Lucitti JL, Jones EA, Huang C, Chen J, Fraser SE, Dickinson ME (2007) Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134(18): 3317–3326. doi:10.1242/dev.02883

    Google Scholar 

  • Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27(6): 1248–1258. doi:10.1161/ATVBAHA.107.141069

    Google Scholar 

  • Majesky MW, Dong XR, Regan JN, Hoglund VJ (2011) Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ Res 108(3): 365–377. doi:10.1161/CIRCRESAHA.110.223800

    Google Scholar 

  • May SR, Stewart NJ, Chang W, Peterson AS (2004) A Titin mutation defines roles for circulation in endothelial morphogenesis. Dev Biol 270(1): 31–46. doi:10.1016/j.ydbio.2004.02.006

    Google Scholar 

  • McLaughlin PJ, Chen Q, Horiguchi M, Starcher BC, Stanton JB, Broekelmann TJ, Marmorstein AD, McKay B, Mecham R, Nakamura T, Marmorstein LY (2006) Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethality in mice. Mol Cell Biol 26(5): 1700–1709

    Google Scholar 

  • McLean SE, Mecham BH, Kelleher CM, Mariani TJ, Mecham RP (2005) Extracellular matrix gene expression in the developing mouse aorta. Adv Dev Biol 15(05): 81–128. doi:10.1016/s1574-3349(05)15003-0

    Google Scholar 

  • Meyer-Lindenberg A, Mervis CB, Berman KF (2006) Neural mechanisms in Williams syndrome: a unique window to genetic influences on cognition and behaviour. Nat Rev Neurosci 7(5):380–393. http://www.nature.com/nrn/journal/v7/n5/suppinfo/nrn1906_S1.html

    Google Scholar 

  • Mills I, Cohen CR, Kamal K, Li G, Shin T, Du W, Sumpio BE (1997) Strain activation of bovine aortic smooth muscle cell proliferation and alignment: study of strain dependency and the role of protein kinase A and C signaling pathways. J Cell Physiol 170(3): 228–234

    Google Scholar 

  • Morrow D, Scheller A, Birney YA, Sweeney C, Guha S, Cummins PM, Murphy R, Walls D, Redmond EM, Cahill PA (2005a) Notch-mediated CBF-1/RBP-J{kappa}-dependent regulation of human vascular smooth muscle cell phenotype in vitro. Am J Physiol Cell Physiol 289(5): C1188–C1196. doi:10.1152/ajpcell.00198.2005

    Google Scholar 

  • Morrow D, Sweeney C, Birney YA, Cummins PM, Walls D, Redmond EM, Cahill PA (2005b) Cyclic strain inhibits Notch receptor signaling in vascular smooth muscle cells in vitro. Circ Res 96(5): 567–575. doi:10.1161/01.RES.0000159182.98874.43

    Google Scholar 

  • Murphy ME, Carlson EC (1978) An ultrastructural study of developing extracellular matrix in vitelline blood vessels of the early chick embryo. Am J Anat 151(3): 345–375. doi:10.1002/aja.1001510304

    Google Scholar 

  • Murtada SI, Kroon M, Holzapfel GA (2010) A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech Model Mechanobiol 9(6): 749–762. doi:10.1007/s10237-010-0211-0

    Google Scholar 

  • Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, Cheng CF, Kobuke K, Dalton N, Takada Y, Tashiro K, Ross J   Jr., Honjo T, Chien KR (2002) Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature 415(6868): 171–175

    Google Scholar 

  • Ninomiya K, Takahashi A, Fujioka Y, Ishikawa Y, Yokoyama M (2006) Transforming growth factor-beta signaling enhances transdifferentiation of macrophages into smooth muscle-like cells. Hypertens Res 29(4): 269–276. doi:10.1291/hypres.29.269

    Google Scholar 

  • Ohno M, Cooke JP, Dzau VJ, Gibbons GH (1995) Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J Clin Invest 95(3): 1363–1369. doi:10.1172/JCI117787

    Google Scholar 

  • Ohura N, Yamamoto K, Ichioka S, Sokabe T, Nakatsuka H, Baba A, Shibata M, Nakatsuka T, Harii K, Wada Y, Kohro T, Kodama T, Ando J (2003) Global analysis of shear stress-responsive genes in vascular endothelial cells. J Atheroscler Thromb 10(5): 304–313

    Google Scholar 

  • Osborne LR, Martindale D, Scherer SW, Shi X-M, Huizenga J, Heng HHQ, Costa T, Pober B, Lew L, Brinkman J, Rommens J, Koop B, Tsui L-C (1996) Identification of genes from a 500-kb region at 7q11.23 that is commonly deleted in Williams syndrome patients. Genomics 36(2): 328–336

    Google Scholar 

  • Paule WJ (1963) Electron microscopy of the newborn rat aorta. J Ultrastruct Res 8: 219–235

    Google Scholar 

  • Pereira L, Andrikopoulos K, Tian J, Lee SY, Keene DR, Ono R, Reinhardt DP, Sakai LY, Biery NJ, Bunton T, Dietz HC, Ramirez F (1997) Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet 17(2): 218–222

    Google Scholar 

  • Phornphutkul C, Rosenthal A, Nadas AS (1973) Cardiac manifestations of Marfan syndrome in infancy and childhood. Circulation 47(3): 587–596

    Google Scholar 

  • Pope FM, Martin GR, Lichtenstein JR, Penttinen R, Gerson B, Rowe DW, McKusick VA (1975) Patients with Ehlers-Danlos syndrome type IV lack type III collagen. Proc Natl Acad Sci USA 72(4): 1314–1316

    Google Scholar 

  • Proske S, Hartschuh W, Enk A, Hausser I (2006) Ehlers-Danlos syndrome—20 years experience with diagnosis and classification. JDDG J Deutsch Dermatol Ges 4(4): 308–318

    Google Scholar 

  • Pyeritz RE (2000) Ehlers–Danlos syndrome. N Eng J Med 342(10): 730–732. doi:10.1056/nejm200003093421009

    Google Scholar 

  • Qin H, Ishiwata T, Wang R, Kudo M, Yokoyama M, Naito Z, Asano G (2000) Effects of extracellular matrix on phenotype modulation and MAPK transduction of rat aortic smooth muscle cells in vitro. Exp Mol Pathol 69(2): 79–90. doi:10.1006/exmp.2000.2321

    Google Scholar 

  • Rachev A (1997) Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J Biomech 30(8): 819–827

    Google Scholar 

  • Rachev A, Hayashi K (1999) Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann Biomed Eng 27(4): 459–468

    Google Scholar 

  • Rachev A, Stergiopulos N, Meister JJ (1996) Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure. J Biomech 29(5): 635–642

    Google Scholar 

  • Recchia D, Sharkey AM, Bosner MS, Kouchoukos NT, Wickline SA (1995) Sensitive detection of abnormal aortic architecture in Marfan syndrome with high-frequency ultrasonic tissue characterization. Circulation 91(4): 1036–1043

    Google Scholar 

  • RihaGM,WangX,WangH, Chai H, MuH, Lin PH, LumsdenAB, Yao Q, Chen C (2007) Cyclic strain induces vascular smooth muscle cell differentiation from murine embryonic mesenchymal progenitor cells. Surgery 141(3):394–402. doi:10.1016/j.surg.2006.07.043

    Google Scholar 

  • Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11: 73–91. doi:10.1146/annurev.cb.11.110195.000445

    Google Scholar 

  • Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21(20): 2511–2524. doi:10.1101/gad.1589207

    Google Scholar 

  • Rodrí guez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4): 455–467

    Google Scholar 

  • Rodríguez J, Goicolea JM, Gabaldón F (2007) A volumetric model for growth of arterial walls with arbitrary geometry and loads. J Biomech 40(5): 961–971

    Google Scholar 

  • Rodriguez JF, Ruiz C, Doblare M, Holzapfel GA (2008) Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J Biomech Eng 130(2): 021023. doi:10.1115/1.2898830

    Google Scholar 

  • Ross JJ, Hong Z, Willenbring B, Zeng L, Isenberg B, Lee EH, Reyes M, Keirstead SA, Weir EK, Tranquillo RT, Verfaillie CM (2006) Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J Clin Invest 116(12): 3139–3149. doi:10.1172/JCI28184

    Google Scholar 

  • Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 250(6 Pt2): H1145–H1149

    Google Scholar 

  • Sage H, Gray WR (1979) Studies on the evolution of elastin–I. Phylogenetic distribution. Comp Biochem Physiol B Comp Biochem 64(4): 313–327

    Google Scholar 

  • Schwarze U, Atkinson M, Hoffman GG, Greenspan DS, Byers PH (2000) Null alleles of the COL5A1 gene of type V collagen are a cause of the classical forms of Ehlers-Danlos syndrome (types I and II). Am J Hum Genet 66(6): 1757–1765. doi:10.1086/302933

    Google Scholar 

  • Shi ZD, Tarbell JM (2011) Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann Biomed Eng 39(6): 1608–1619. doi:10.1007/s10439-011-0309-2

    Google Scholar 

  • Shimizu N, Yamamoto K, Obi S, Kumagaya S, Masumura T, Shimano Y, Naruse K, Yamashita JK, Igarashi T, Ando J (2008) Cyclic strain induces mouse embryonic stem cell differentiation into vascular smooth muscle cells by activating PDGF receptor beta. J Appl Physiol 104(3): 766–772. doi:10.1152/japplphysiol.00870.2007

    Google Scholar 

  • Stalhand J, Klarbring A, Holzapfel GA (2008) Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains. Prog Biophys Mol Biol 96(1–3): 465–481. doi:10.1016/j.pbiomolbio.2007.07.025

    Google Scholar 

  • Sterpetti AV, Cucina A, Fragale A, Lepidi S, Cavallaro A, Santoro-D’Angelo L (1994) Shear stress influences the release of platelet derived growth factor and basic fibroblast growth factor by arterial smooth muscle cells. Winner of the ESVS prize for best experimental paper 1993. Eur J Vas Surg 8(2): 138–142

    Google Scholar 

  • Sutcliffe MC, Davidson JM (1990) Effect of static stretching on elastin production by porcine aortic smooth muscle cells. Matrix 10(3): 148–153

    Google Scholar 

  • Szabo Z, Crepeau MW, Mitchell AL, Stephan MJ, Puntel RA, Yin Loke K, Kirk RC, Urban Z (2006) Aortic aneurysmal disease and cutis laxa caused by defects in the elastin gene. J Med Genet 43: 255–258

    Google Scholar 

  • Taber LA (1998) A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng 120: 348–467

    Google Scholar 

  • Taber LA (2008) Theoretical study of Beloussov’s hyper-restoration hypothesis for mechanical regulation of morphogenesis. Biomech Model Mechanobiol 7(6): 427–441. doi:10.1007/s10237-007-0106-x

    Google Scholar 

  • Taber LA (2009) Towards a unified theory for morphomechanics. Philos Trans A Math Phys Eng Sci 367(1902): 3555–3583. doi:10.1098/rsta.2009.0100

    MathSciNet  MATH  Google Scholar 

  • Taber LA, Eggers DW (1996) Theoretical study of stress-modulated growth in the aorta. J Theor Biol 180: 343–357

    Google Scholar 

  • Tada S, Tarbell JM (2000) Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 278(5): H1589–H1597

    Google Scholar 

  • Thorne BC, Hayenga HN, Humphrey JD, Peirce SM (2011) Toward a multi-scale computational model of arterial adaptation in hypertension: verification of a multi-cell agent based model. Front Physiol 2: 20. doi:10.3389/fphys.2011.00020

    Google Scholar 

  • Tsamis A, Stergiopulos N (2007) Arterial remodeling in response to hypertension using a constituent-based model. Am J Physiol Heart Circ Physiol 293(5): H3130–H3139. doi:10.1152/ajpheart.00684.2007

    Google Scholar 

  • Valentin A, Cardamone L, Baek S, Humphrey JD (2009) Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J R Soc Interface 6(32): 293–306. doi:10.1098/rsif.2008.0254

    Google Scholar 

  • Valentin A, Humphrey JD (2009a) Modeling effects of axial extension on arterial growth and remodeling. Med Biol Eng Comput 47(9): 979–987. doi:10.1007/s11517-009-0513-5

    Google Scholar 

  • Valentin A, Humphrey JD (2009b) Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling. J Biomech Eng 131(10): 101006. doi:10.1115/1.3192144

    Google Scholar 

  • Vito RP, Dixon SA (2003) Blood vessel constitutive models-1995-2002. Annu Rev Biomed Eng 5: 413–439

    Google Scholar 

  • von Maltzahn WW, Besdo D, Wiemer W (1981) Elastic properties of arteries: a nonlinear two-layer cylindrical model. J Biomech 14(6): 389–397

    Google Scholar 

  • von Maltzahn WW, Warriyar RG, Keitzer WF (1984) Experimental measurements of elastic properties of media and adventitia of bovine carotid arteries. J Biomech 17(11): 839–847

    Google Scholar 

  • Vuillemin M, Pexieder T (1989) Normal stages of cardiac organogenesis in the mouse: II. Development of the internal relief of the heart. Am J Anat 184(2): 114–128

    Google Scholar 

  • Wagenseil JE (2011) A constrained mixture model for developing mouse aorta. Biomech Model Mechanobiol 10(5): 671–687. doi:10.1007/s10237-010-0265-z

    Google Scholar 

  • Wagenseil JE, Ciliberto CH, Knutsen RH, Levy MA, Kovacs A, Mecham RP (2009) Reduced vessel elasticity alters cardiovascular structure and function in newborn mice. Circ Res 104(10): 1217–1224. doi:10.1161/CIRCRESAHA.108.192054

    Google Scholar 

  • Wagenseil JE, Ciliberto CH, Knutsen RH, Levy MA, Kovacs A, Mecham RP (2010) The importance of elastin to aortic development in mice. Am J Physiol Heart Circ Physiol 299(2): H257–H264. doi:10.1152/ajpheart.00194.2010

    Google Scholar 

  • Wagenseil JE, Knutsen RH, Li D, Mecham RP (2007) Elastin insufficient mice show normal cardiovascular remodeling in 2K1C hypertension, despite higher baseline pressure and unique cardiovascular architecture. Am J Physiol Heart Circ Physiol 293(1): H574–H582

    Google Scholar 

  • Wagenseil JE, Mecham RP (2007) New insights into elastic fiber assembly. Birth Defects Res C Embryo Today 81(4): 229–240. doi:10.1002/bdrc.20111

    Google Scholar 

  • Wagenseil JE, Mecham RP (2009) Vascular extracellular matrix and arterial mechanics. Physiol Rev 89(3): 957–989. doi:10.1152/physrev.00041.2008

    Google Scholar 

  • Wagenseil JE, Nerurkar NL, Knutsen RH, Okamoto RJ, Li DY, Mecham RP (2005) Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries. Am J Physiol Heart Circ Physiol 289(3): H1209–H1217. doi:10.1152/ajpheart.00046.2005

    Google Scholar 

  • Wakimoto K, Kobayashi K, Kuro OM, Yao A, Iwamoto T, Yanaka N, Kita S, Nishida A, Azuma S, Toyoda Y, Omori K, Imahie H, Oka T, Kudoh S, Kohmoto O, Yazaki Y, Shigekawa M, Imai Y, Nabeshima Y, Komuro I (2000) Targeted disruption of Na+/Ca2+ exchanger gene leads to cardiomyocyte apoptosis and defects in heartbeat. J Biol Chem 275(47): 36991–36998. doi:10.1074/jbc.M004035200

    Google Scholar 

  • Wang DM, Tarbell JM (1995) Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells. J Biomech Eng 117(3): 358–363

    Google Scholar 

  • Wenstrup RJ, Florer JB, Brunskill EW, Bell SM, Chervoneva I, Birk DE (2004) Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem 279(51): 53331–53337. doi:10.1074/jbc.M409622200

    Google Scholar 

  • Wenstrup RJ, Florer JB, Davidson JM, Phillips CL, Pfeiffer BJ, Menezes DW, Chervoneva I, Birk DE (2006) Murine model of the Ehlers-Danlos syndrome. col5a1 haploinsufficiency disrupts collagen fibril assembly at multiple stages. J Biol Chem 281(18): 12888–12895. doi:10.1074/jbc.M511528200

    Google Scholar 

  • Wernig F, Mayr M, Xu Q (2003) Mechanical stretch-induced apoptosis in smooth muscle cells is mediated by beta1-integrin signaling pathways. Hypertension 41(4): 903–911. doi:10.1161/01.HYP.0000062882.42265.88

    Google Scholar 

  • Wilson E, Sudhir K, Ives HE (1995) Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J Clin Invest 96(5): 2364–2372. doi:10.1172/JCI118293

    Google Scholar 

  • Wolff J (1986) The law of bone remodeling (trans: Maquet P, Furlong R) Springer, Berlin

  • Wolinsky H (1970) Response of the rat aortic media to hypertension. Morphological and chemical studies. Circ Res 26(4): 507–522

    Google Scholar 

  • Wolinsky H, Glagov S (1964) Structural basis for the static mechanical properties of the aortic media. Circ Res 14: 400–413

    Google Scholar 

  • Wolinsky H, Glagov S (1967) A lamellar unit of aortic medial structure and function in mammals. Circ Res 20(1): 99–111

    Google Scholar 

  • Wuyts FL, Vanhuyse VJ, Langewouters GJ, Decraemer WF, Raman ER, Buyle S (1995) Elastic properties of human aortas in relation to age and atherosclerosis: a structural model. Phys Med Biol 40(10): 1577–1597

    Google Scholar 

  • Yamamoto M, Yamamoto K, Noumura T (1993) Type I collagen promotes modulation of cultured rabbit arterial smooth muscle cells from a contractile to a synthetic phenotype. Exp Cell Res 204(1): 121–129. doi:10.1006/excr.1993.1016

    Google Scholar 

  • Yanagisawa H, Davis EC (2010) Unraveling the mechanism of elastic fiber assembly: the roles of short fibulins. Int J Biochem Cell Biol 42(7): 1084–1093. doi:10.1016/j.biocel.2010.03.009

    Google Scholar 

  • Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagisawa M, Richardson JA, Olson EN (2002) Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature 415(6868): 168–171

    Google Scholar 

  • Yang J, Clark JW   Jr., Bryan RM, Robertson C (2003) The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell model. Med Eng Phys 25(8): 691–709

    Google Scholar 

  • Zhang H, Hu W, Ramirez F (1995) Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils. J Cell Biol 129(4): 1165–1176

    Google Scholar 

  • Zulliger MA, Fridez P, Hayashi K, Stergiopulos N (2004) A strain energy function for arteries accounting for wall composition and structure. J Biomech 37(7): 989–1000

    Google Scholar 

  • Zulliger MA, Stergiopulos N (2007) Structural strain energy function applied to the ageing of the human aorta. J Biomech 40(14): 3061–3069

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica E. Wagenseil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, J.K., Wagenseil, J.E. Extracellular matrix and the mechanics of large artery development. Biomech Model Mechanobiol 11, 1169–1186 (2012). https://doi.org/10.1007/s10237-012-0405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0405-8

Keywords

Navigation