Skip to main content
Log in

Highly sensitive single-fibril erosion assay demonstrates mechanochemical switch in native collagen fibrils

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

An Erratum to this article was published on 04 June 2013

Abstract

It has been established that the enzyme susceptibility of collagen, the predominant load-bearing protein in vertebrates, is altered by applied tension. However, whether tensile force increases or decreases the susceptibility to enzyme is a matter of contention. It is critical to establish a definitive understanding of the direction and magnitude of the force versus catalysis rate (k C ) relationship if we are to properly interpret connective tissue development, growth, remodeling, repair, and degeneration. In this investigation, we examine collagen/enzyme mechanochemistry at the smallest scale structurally relevant to connective tissue: the native collagen fibril. A single-fibril mechanochemical erosion assay with nN force resolution was developed which permits detection of the loss of a few layers of monomer from the fibril surface. Native type I fibrils (bovine) held at three levels of tension were exposed to Clostridium histolyticum collagenase A. Fibrils held at zero-load failed rapidly and consistently (20 min) while fibrils at 1.8 pN/monomer failed more slowly (35–55 min). Strikingly, fibrils at 23.9 pN/monomer did not exhibit detectable degradation. The extracted force versus k C data were combined with previous single-molecule results to produce a “master curve” which suggests that collagen degradation is governed by an extremely sensitive mechanochemical switch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhikari AS, Chai J, Dunn AR (2011) Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by MMP-1. J Am Chem Soc. doi:10.1021/ja109972p

  • Arokoski JP, Jurvelin JS, Vaatainen U, Helminen HJ (2000) Normal and pathological adaptations of articular cartilage to joint loading. Scand J Med Sci Sports 10(4): 186–198

    Article  Google Scholar 

  • Baragi VM, Qiu L, Gunja-Smith Z, Woessner JF Jr., Lesch CA, Guglietta A (1997) Role of metalloproteinases in the development and healing of acetic acid-induced gastric ulcer in rats. Scand J Gastroenterol 32(5): 419–426

    Article  Google Scholar 

  • Bass EC, Wistrom EV, Diederich CJ, Nau WH, Pellegrino R, Ruberti J, Lotz JC (2004) Heat-induced changes in porcine annulus fibrosus biomechanics. J biomech 37(2): 233–240

    Article  Google Scholar 

  • Beare AH, O’Kane S, Krane SM, Ferguson MW (2003) Severely impaired wound healing in the collagenase-resistant mouse. J Invest Dermatol 120(1): 153–163. doi:10.1046/j.1523-1747.2003.12019.x

    Article  Google Scholar 

  • Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA 76(3): 1274–1278

    Article  Google Scholar 

  • Bhole AP, Flynn BP, Liles M, Saeidi N, Dimarzio CA, Ruberti JW (2009) Mechanical strain enhances survivability of collagen micronetworks in the presence of collagenase: implications for load-bearing matrix growth and stability. Philos Trans A Math Phys Eng Sci 367(1902): 3339–3362

    Article  Google Scholar 

  • Blain EJ, Gilbert SJ, Wardale RJ, Capper SJ, Mason DJ, Duance VC (2001) Up-regulation of matrix metalloproteinase expression and activation following cyclical compressive loading of articular cartilage in vitro. Arch Biochem Biophys 396(1): 49–55

    Article  Google Scholar 

  • Camp RJ, Liles M, Beale J, Saeidi N, Flynn BP, Moore E, Murthy SK, Ruberti JW (2011) Molecular mechanochemistry: low force switch slows enzymatic cleavage of human type I collagen monomer. J Am Chem Soc. doi:10.1021/ja110098b

  • Canty EG, Lu Y, Meadows RS, Shaw MK, Holmes DF, Kadler KE (2004) Coalignment of plasma membrane channels and protrusions (fibripositors) specifies the parallelism of tendon. J Cell Biol 165(4): 553–563. doi:10.1083/jcb.200312071

    Article  Google Scholar 

  • Cawston T, Billington C, Cleaver C, Elliott S, Hui W, Koshy P, Shingleton B, Rowan A (1999) The regulation of MMPs and TIMPs in cartilage turnover. Ann NY Acad Sci 878: 120–129

    Article  Google Scholar 

  • Chang S-W, Flynn BP, Ruberti JW, Buehler MJ (2012) Molecular mechanism of force induced stabilization of collagen against enzymatic breakdown. Biomaterials 33(15): 3852–3859

    Article  Google Scholar 

  • Chen SS, Wright NT, Humphrey JD (1997) Heat-induced changes in the mechanics of a collagenous tissue: isothermal free shrinkage. J Biomech Eng 119(4): 372–378

    Article  Google Scholar 

  • Cowin SC (2004) Tissue growth and remodeling. Annu Rev Biomed Eng 6: 77–107

    Article  Google Scholar 

  • Eppell SJ, Smith BN, Kahn H, Ballarini R (2006) Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. J R Soc Interface 3(6): 117–121. doi:10.1098/rsif.2005.0100

    Article  Google Scholar 

  • Flynn BP, Bhole AP, Saeidi N, Liles M, Dimarzio CA, Ruberti JW (2010) Mechanical strain stabilizes reconstituted collagen fibrils against enzymatic degradation by mammalian collagenase matrix metalloproteinase 8 (MMP-8). PLoS One 5(8). doi:10.1371/journal.pone.0012337

  • Grams F, Reinemer P, Powers JC, Kleine T, Pieper M, Tschesche H, Huber R, Bode W (1995) X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Eur J Biochem 228(3): 830–841

    Article  Google Scholar 

  • Grytz R, Meschke G, Jonas JB (2011) The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Biomech Model Mechanobiol 10(3): 371–382. doi:10.1007/s10237-010-0240-8

    Article  Google Scholar 

  • Harrington DJ (1996) Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infect Immun 64(6): 1885–1891

    Google Scholar 

  • Hormann H (1982) Fibronectin–mediator between cells and connective tissue. Klin Wochenschr 60(20): 1265–1277

    Article  Google Scholar 

  • Huang C, Yannas IV (1977) Mechanochemical studies of enzymatic degradation of insoluble collagen fibers. J Biomed Mater Res Symp 11(1):137–154

    Google Scholar 

  • Huang Y, Meek KM (1999) Swelling studies on the cornea and sclera: the effects of pH and ionic strength. Biophys J 77(3): 1655–1665. doi:10.1016/S0006-3495(99)77013-X

    Article  Google Scholar 

  • Hulboy DL, Rudolph LA, Matrisian LM (1997) Matrix metalloproteinases as mediators of reproductive function. Mol Hum Reprod 3(1): 27–45

    Article  Google Scholar 

  • Hulmes DJ, Miller A, Parry DA, Piez KA, Woodhead-Galloway J (1973) Analysis of the primary structure of collagen for the origins of molecular packing. J Mol Biol 79(1): 137–148

    Article  Google Scholar 

  • Humphrey JD (2001) Stress, strain, and mechanotransduction in cells. J Biomech Eng 123(6): 638–641

    Article  Google Scholar 

  • Inada M, Wang Y, Byrne MH, Rahman MU, Miyaura C, Lopez-Otin C, Krane SM (2004) Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci USA 101(49): 17192–17197. doi:10.1073/pnas.0407788101

    Article  Google Scholar 

  • Kadler K (2004) Matrix loading: assembly of extracellular matrix collagen fibrils during embryogenesis. Birth Defects Res C Embryo Today 72(1): 1–11

    Article  Google Scholar 

  • Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Donaldson WF III, Evans CH (1996) Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine (Phila Pa 1976) 21(3):271–277

    Google Scholar 

  • Kilian O, Pfeil U, Wenisch S, Heiss C, Kraus R, Schnettler R (2007) Enhanced alpha 1(I) mRNA expression in frozen shoulder and dupuytren tissue. Eur J Med Res 12(12): 585–590

    Google Scholar 

  • Koskinen SO, Heinemeier KM, Olesen JL, Langberg H, Kjaer M (2004) Physical exercise can influence local levels of matrix metalloproteinases and their inhibitors in tendon-related connective tissue. J Appl Physiol 96(3): 861–864

    Article  Google Scholar 

  • Leikina E, Mertts MV, Kuznetsova N, Leikin S (2002) Type I collagen is thermally unstable at body temperature. Proc Natl Acad Sci USA 99(3): 1314–1318. doi:10.1073/pnas.032307099

    Article  Google Scholar 

  • Lyubimov AV, Vasiliev JM (1982) Distribution of fibronectin-containing structures on the surface of lamelloplasm and endoplasm of fibroblasts; hypothesis of receptor-mediated assembly of fibronectin structures. Cell Biol Int Rep 6(2): 105–112

    Article  Google Scholar 

  • Mallya SK, Mookhtiar KA, Van Wart HE (1992) Kinetics of hydrolysis of type I, II, and III collagens by the class I and II Clostridium histolyticum collagenases. J Protein Chem 11(1): 99–107

    Article  Google Scholar 

  • McCawley LJ, Matrisian LM (2000) Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today 6(4): 149–156. doi:S1357-4310(00)01686-5

    Article  Google Scholar 

  • Meek KM, Leonard DW (1993) Ultrastructure of the corneal stroma: a comparative study. Biophys J 64: 273–280

    Article  Google Scholar 

  • Michna H, Hartmann G (1989) Adaptation of tendon collagen to exercise. Int Orthop 13(3): 161–165

    Article  Google Scholar 

  • Miles CA, Ghelashvili M (1999) Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J 76(6): 3243–3252. doi:10.1016/S0006-3495(99)77476-X

    Article  Google Scholar 

  • Minond D, Lauer-Fields JL, Nagase H, Fields GB (2004) Matrix metalloproteinase triple-helical peptidase activities are differentially regulated by substrate stability. Biochemistry 43(36): 11474–11481. doi:10.1021/bi048938i

    Article  Google Scholar 

  • Nabeshima Y, Grood ES, Sakurai A, Herman JH (1996) Uniaxial tension inhibits tendon collagen degradation by collagenase in vitro. J Orthop Res 14: 123–130

    Article  Google Scholar 

  • Nemetschek T, Jonak R, Nemetschek-Gansler H, Riedl H, Rosenbaum G (1978) [On the determination of changes in the large periodic structure of collagen (author’s transl)]. Z Naturforsch C 33(11-12): 928–936

    Google Scholar 

  • Nerenberg PS, Salsas-Escat R, Stultz CM (2008) Do collagenases unwind triple-helical collagen before peptide bond hydrolysis? Reinterpreting experimental observations with mathematical models. Proteins 70(4): 1154–1161. doi:10.1002/prot.21687

    Article  Google Scholar 

  • Okada T, Hayashi T, Ikada Y (1992) Degradation of collagen suture in vitro and in vivo. Biomaterials 13: 448–454

    Article  Google Scholar 

  • Perumal S, Antipova O, Orgel JP (2008) Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc Natl Acad Sci USA 105(8): 2824–2829. doi:10.1073/pnas.0710588105

    Article  Google Scholar 

  • Prajapati RT, Chavally-Mis B, Herbage D, Eastwood M, Brown RA (2000) Mechanical loading regulates protease production by fibroblasts in three-dimensional collagen substrates. Wound Repair Regen 8(3): 226–237

    Article  Google Scholar 

  • Ruberti JW, Hallab NJ (2005) Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem Biophys Res Commun 336(2): 483–489. doi:10.1016/j.bbrc.2005.08.128

    Article  Google Scholar 

  • Sander EA, Barocas VH, Tranquillo RT (2011) Initial fiber alignment pattern alters extracellular matrix synthesis in fibroblast-populated fibrin gel cruciforms and correlates with predicted tension. Ann Biomed Eng 39(2): 714–729. doi:10.1007/s10439-010-0192-2

    Article  Google Scholar 

  • Stultz CM (2002) Localized unfolding of collagen explains collagenase cleavage near imino-poor sites. J Mol Biol 319(5): 997–1003. doi:10.1016/S0022-2836(02)00421-7

    Article  Google Scholar 

  • Tzafriri AR, Bercovier M, Parnas H (2002) Reaction diffusion model of the enzymatic erosion of insoluble fibrillar matrices. Biophys J 83: 776–793

    Article  Google Scholar 

  • Van der Rijt JA, Van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J (2006) Micromechanical testing of individual collagen fibrils. Macromol Biosci 6(9): 697–702. doi:10.1002/mabi.200600063

    Article  Google Scholar 

  • Welgus HG, Jeffrey JJ, Stricklin GP, Roswit WT, Eisen AZ (1980) Characteristics of the action of human skin fibroblast collagenase on fibrillar collagen. J Biolo Chem 255: 6808–6813

    Google Scholar 

  • Wyatt KE, Bourne JW, Torzilli PA (2009) Deformation-dependent enzyme mechanokinetic cleavage of type I collagen. J Biomech Eng 131(5): 051004

    Article  Google Scholar 

  • Zareian R, Church KP, Saeidi N, Flynn BP, Beale JW, Ruberti JW (2010) Probing collagen/enzyme mechanochemistry in native tissue with dynamic, enzyme-induced creep. Langmuir 26(12): 9917–9926. doi:10.1021/la100384e

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Ruberti.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flynn, B.P., Tilburey, G.E. & Ruberti, J.W. Highly sensitive single-fibril erosion assay demonstrates mechanochemical switch in native collagen fibrils. Biomech Model Mechanobiol 12, 291–300 (2013). https://doi.org/10.1007/s10237-012-0399-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0399-2

Keywords

Navigation