Skip to main content
Log in

Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Flow and stresses induced by blood flow acting on the blood cellular constituents can be represented to a certain extent by a continuum mechanics approach down to the order of the μm level. However, the molecular effects of, e.g., adhesion/aggregation bonds of blood clotting can be on the order of nm. The coupling of the disparate length and timescales between such molecular levels and macroscopic transport represents a major computational challenge. To address this challenge, a multiscale numerical approach based on discrete particle dynamics (DPD) methodology derived from molecular dynamics (MD) principles is proposed. The feasibility of the approach was firstly tested for its ability to simulate viscous flow conditions. Simulations were conducted in low Reynolds numbers flows (Re = 25–33) through constricted tubes representing blood vessels with various degrees of stenosis. Multiple discrete particles interacting with each other were simulated, with 1.24–1.36 million particles representing the flow domain and 0.4 million particles representing the vessel wall. The computation was carried out on the massive parallel supercomputer NY BlueGene/L employing NAMD-a parallel MD package for high performance computing (HPC). Typical recirculation zones were formed distal to the stenoses. The velocity profiles and recirculation zones were in excellent agreement with computational fluid dynamics (CFD) 3D Navier–Stokes viscous fluid flow simulations and with classic numerical and experimental results by YC Fung in constricted tubes. This feasibility analysis demonstrates the potential of a methodology that widely departs from a continuum approach to simulate multiscale phenomena such as flow induced blood clotting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPD:

Discrete particle dynamics

NAMD:

Nanoscale molecular dynamics

L-J:

Lennard-Jones

CFD:

Computational fluid dynamics

Re:

Reynolds number

References

  • Albert R, Barabasi AL, Carle N, Dougherty A (1998) Driven interfaces in disordered media: determination of universality classes from experimental data. Phys Rev Lett 81(14): 2926–2929

    Article  Google Scholar 

  • Alder BJ, Gass DM, Wainwrig Te (1970) Studies in molecular dynamics. 8. Transport coefficients for a hard-sphere fluid. J Chem Phys 53(10): 3813–3826

    Article  Google Scholar 

  • Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  • Berendsen HJC, Vanderspoel D, Vandrunen R (1995) Gromacs—a message-passing parallel molecular-dynamics implementation. Comput Phys Commun 91(1–3): 43–56

    Article  Google Scholar 

  • Boek ES, Coveney PV, Lekkerkerker HNW (1996) Computer simulation of rheological phenomena in dense colloidal suspensions with dissipative particle dynamics. J Phys Cond Matter 8(47): 9509–9512

    Article  Google Scholar 

  • Boryczko K, Dzwinel W, Yuen DA (2005) Modeling heterogeneous mesoscopic fluids in irregular geometries using shared memory systems. Molec Sim 31(1): 45–56. doi:10.1080/08927020412331299341

    Article  Google Scholar 

  • Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891): 813–821

    Article  Google Scholar 

  • Dwinzel W, Yuen DA, Boryczko K (2002) Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model. J Mol Model 8(1): 33–43

    Article  Google Scholar 

  • Dzwinel W, Boryczko K, Yuen DA (2003) A discrete-particle model of blood dynamics in capillary vessels. J Colloid Interface Sci 258(1): 163–173

    Article  Google Scholar 

  • Espanol P (1998) Fluid particle model. Phys Rev E 57(3): 2930–2948

    Article  Google Scholar 

  • Fan X, Phan-Thien N, Yong NT, Diao X (2002) Molecular dynamics simulation of a liquid in a complex nano channel flow. Phys Fluids 14(3): 1146–1153

    Article  Google Scholar 

  • Gara A, Blumrich MA, Chen D, Chiu GLT, Coteus P, Giampapa ME, Haring RA, Heidelberger P, Hoenicke D, Kopcsay GV, Liebsch TA, Ohmacht M, Steinmacher-Burow BD, Takken T, Vranas P (2005) Overview of the Blue Gene/L system architecture. IBM J Res Dev 49(2–3): 195–212

    Article  Google Scholar 

  • Goldsmith J, Martens CC (2010) Molecular dynamics simulation of salt rejection in model surface-modified nanopores. J Phys Chem Lett 1(2): 528–535. doi:10.1021/Jz900173w

    Article  Google Scholar 

  • Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107: 4423–4435

    Article  Google Scholar 

  • Hou TY, Wu XH (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comp Phys 134(1): 169–189

    Article  MATH  MathSciNet  Google Scholar 

  • Janssens KGF, Olmsted D, Holm EA, Foiles SM, Plimpton SJ, Derlet PM (2006) Computing the mobility of grain boundaries. Nat Mater 5(2): 124–127

    Article  Google Scholar 

  • Jesudason CG (2006) Linear algebra of reduced units and discussion of temperature parameters in scientific computations. Nonlin Anal Real World App 7(3): 470–477. doi:10.1016/j.nonrwa.2005.03.016

    Article  MATH  MathSciNet  Google Scholar 

  • Kadau K, Germann TC, Hadjiconstantinou NG, Lomdahl PS, Dimonte G, Holian BL, Alder BJ (2004) Nanohydrodynamics simulations: an atomistic view of the Rayleigh-Taylor instability. Proc Nat Acad Sci USA 101(16): 5851–5855. doi:10.1073/pnas.0401228101

    Article  MATH  MathSciNet  Google Scholar 

  • Kechagia PE, Tsimpanogiannis IN, Yortsos YC, Lichtner PC (2002) On the upscaling of reaction-transport processes in porous media with fast or finite kinetics. Chem Eng Sci 57(13): 2565–2577. doi:PiiS0009-2509(02)00124

    Article  Google Scholar 

  • Kumar A, Asako Y, Abu-Nada E, Krafczyk M, Faghri M (2009) From dissipative particle dynamics scales to physical scales: a coarse-graining study for water flow in microchannel. Microfluid Nanofluid 7(4): 467–477

    Article  Google Scholar 

  • Kumar S, Huang C, Zheng G, Bohm E, Bhatele A, Phillips JC, Yu H, Kale LV (2008) Scalable molecular dynamics with NAMD on the IBM Blue Gene/L system. IBM J Res Dev 52(1–2): 177–188

    Article  Google Scholar 

  • Ladd AJC, Verberg R (2001) Lattice-Boltzmann simulations of particle-fluid suspensions. J Stat Phys 104(5–6): 1191–1251

    Article  MATH  MathSciNet  Google Scholar 

  • Lee J, Fung Y (1971) Flow in nonuniform small blood vessels. Microvascul Res 3(3): 272–287

    Article  Google Scholar 

  • Lee JS, Fung YC (1970) Flow in locally constricted tubes at low reynolds numbers. Mech Eng 92(6): 71–79

    Google Scholar 

  • Leroy F, Müller-Plathe F (2010) Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method. J Chem Phys 133(044110): 1–11

    Google Scholar 

  • Mastny EA, de Pablo JJ (2007) Melting line of the Lennard-Jones system, infinite size, and full potential. J Chem Phys 127(10): 104504. doi:10.1063/1.2753149

    Article  Google Scholar 

  • Meier K, Laesecke A, Kabelac S (2004) Transport coefficients of the Lennard-Jones model fluid. I. Viscosity. J Chem Phys 121(8): 3671–3687

    Article  Google Scholar 

  • Mi X, Chwang AT (2003) Molecular dynamics simulations of nanochannel flows at low reynolds numbers. Molecules 8: 193–206

    Article  Google Scholar 

  • Nakano A, Bachlechner ME, Campbell TJ, Kalla RK, Omeltchenko A, Tsuruta K, Vashishta P, Ogata S, Ebbsjo I, Madhukar A (1998) Atomistic simulation of nanostructured materials. IEEE Comp Sci Eng 5(4): 68–78

    Article  Google Scholar 

  • Nelson MT, Humphrey W, Gursoy A, Dalke A, Kale LV, Skeel RD, Schulten K (1996) NAMD: A parallel, object oriented molecular dynamics program. Int J Supercomput Ap 10(4): 251–268

    Article  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26(16): 1781–1802

    Article  Google Scholar 

  • Pivkin IV, Karniadakis GE (2005) A new method to impose no-slip boundary conditions in dissipative particle dynamics. J Comp Phys 207(1): 114–128. doi:10.1016/j.jcp.2005.01.006

    Article  MATH  MathSciNet  Google Scholar 

  • Qian TZ, Wang XP (2005) Driven cavity flow: from molecular dynamics to continuum hydrodynamics. Mult Model Sim 3(4): 749–763. doi:10.1137/040604868

    Article  MATH  MathSciNet  Google Scholar 

  • Revenga M, Zuniga I, Espanol P (1999) Boundary conditions in dissipative particle dynamics. Comp Phys Comm 122: 309–311

    Article  Google Scholar 

  • Sagui C, Darden TA (1999) Molecular dynamics simulations of biomolecules: Long-range electrostatic effects. Annu Rev Biophys Biomol Struc 28: 155–179

    Article  Google Scholar 

  • Sanbonmatsu KY, Tung CS (2007) High performance computing in biology: multimillion atom simulations of nanoscale systems. J Struct Biol 157(3): 470–480. doi:10.1016/j.jsb.2006.10.023

    Article  Google Scholar 

  • Sofos F, Karakasidis TE, Liakopoulos A (2009) Non-equilibrium molecular dynamics investigation of parameters affecting planar nanochannel flows. Comtempor Eng Sci 2(6): 283–298

    Google Scholar 

  • Travis KP, Gubbins KE (2000) Poiseuille flow of Lennard-Jones fluids in narrow slit pores. J Chem Phys 112(4): 1984–1994

    Article  Google Scholar 

  • Travis KP, Todd BD, Evans DJ (1997) Departure from Navier-Stokes hydrodynamics in confined liquids. Phys Rev E 55(4): 4288–4294

    Article  Google Scholar 

  • Xu JL, Zhou ZQ (2004) Molecular dynamics simulation of liquid argon flow at platinum surfaces. Heat Mass Trans 40(11): 859–869. doi:10.1007/s00231-003-0483-3

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Bluestein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, R., Xenos, M., Girdhar, G. et al. Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD. Biomech Model Mechanobiol 11, 119–129 (2012). https://doi.org/10.1007/s10237-011-0297-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-011-0297-z

Keywords

Navigation