Skip to main content
Log in

Adaptive generation of multimaterial grids from imaging data for biomedical Lagrangian fluid–structure simulations

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Spatial discretization of complex imaging- derived fluid–solid geometries, such as the cardiac environment, is a critical but often overlooked challenge in biomechanical computations. This is particularly true in problems with Lagrangian interfaces, where the fluid and solid phases share a common interface geometrically. For simplicity and better accuracy, it is also highly desirable for the two phases to have a matching surface mesh at the interface between them. We outline a method for solving this problem, and illustrate the approach with a 3D fluid–solid mesh of the mouse heart. An MRI dataset of a perfusion-fixed mouse heart with 50μm isotropic resolution was semi-automatically segmented using a customized multimaterial connected-threshold approach that divided the volume into non-overlapping regions of blood, tissue, and background. Subsequently a multimaterial marching cubes algorithm was applied to the segmented data to produce two detailed, compatible isosurfaces, one for blood and one for tissue. Both isosurfaces were simultaneously smoothed with a multimaterial smoothing algorithm that exactly conserves the volume for each phase. Using these two isosurfaces, we developed and applied novel automated meshing algorithms to generate anisotropic hybrid meshes on arbitrary biological geometries with the number of layers and the desired element anisotropy for each phase as the only input parameters. Since our meshes adapt to the local feature sizes and include boundary layer prisms, they are more efficient and accurate than non-adaptive, isotropic meshes, and the fluid–structure interaction computations will tend to have relative error equilibrated over the whole mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amenta N, Bern M (1999) Surface reconstruction by Voronoi filtering. Discret Comp Geom 22: 481–504

    Article  MATH  MathSciNet  Google Scholar 

  • Butcher JT, Markwald RR (2007) Valvulogenesis: the moving target. Philos Trans R Soc Lond B Biol Sci 362(1484): 1489–1503

    Article  Google Scholar 

  • Butcher JT, Nerem RM (2007) Valvular endothelial cells and the mechanoregulation of valvular pathology. Philos Trans R Soc Lond B Biol Sci 362(1484): 1445–1457

    Article  Google Scholar 

  • Butcher JT, Tressel S, Johnson T, Turner D, Sorescu G, Jo H, Nerem RM (2006) Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler Thromb Vasc Biol 26(1): 69–77

    Article  Google Scholar 

  • Chen LC, Nadziejko C (2005) Effects of subchronic exposures to concentrated ambient particles (caps) in mice. V. Caps exacerbate aortic plaque development in hyperlipidemic mice. Inhal Toxicol 17(4–5): 217–224

    Article  Google Scholar 

  • Chien S, Li S, Shiu YT, Li YS (2005) Molecular basis of mechanical modulation of endothelial cell migration. Front Biosci 10: 1985–2000

    Article  Google Scholar 

  • Chiou MC (1998) Particle deposition from natural convection boundary layer flow onto an isothermal vertical cylinder. Acta Mech 129: 163–176

    Article  MATH  Google Scholar 

  • Cisloiu R, Lovell M, Wang J (2008) Astabilized mixed formulation for finite strain deformation for low-order tetrahedral solid elements. Finite Elements Anal Des 44: 472–482

    Article  Google Scholar 

  • Cummins PM, Cotter EJ, Cahill PA (2004) Hemodynamic regulation of metallopeptidases within the vasculature. Protein Pept Lett 11(5): 433–442

    Article  Google Scholar 

  • Dardik A, Yamashita A, Aziz F, Asada H, Sumpio BE (2005) Shear stress-stimulated endothelial cells induce smooth muscle cell chemotaxis via platelet-derived growth factor-bb and interleukin-1alpha. J Vasc Surg 41(2): 321–331

    Article  Google Scholar 

  • Del Pin F, Idelsohn SR, Oñate E, Aubry R (2007) The Ale/Lagrangian particle finite element method: A new approach to computation of free-surface flows and fluid–object interactions. Comput Fluids 36: 27–38

    Article  MATH  Google Scholar 

  • Dyedov V, Einstein DR, Jiao X, Kuprat AP, Carson JP, del Pin F (2009) Variational generation of prismatic boundary-layer meshes. Int J Numer Methods Eng 79(8): 907–945

    Article  MATH  MathSciNet  Google Scholar 

  • Einstein DR, Pin FD, Kuprat AP, Jiao X, Carson JP, Kunzelman KS, Cochran RP, Guccione J, Ratcliffe M (2009) Fluid–structure interactions of the mitral valve and left heart: comprehensive strategies, past, present and future. Commun Numer Methods Eng (in press)

  • Ganguli A, Persson L, Palmer IR, Evans I, Yang L, Smallwood R, Black R, Qwarnstrom EE (2005) Distinct nf-kappab regulation by shear stress through ras-dependent ikappabalpha oscillations: real-time analysis of flow-mediated activation in live cells. Circ Res 96(6): 626–634

    Article  Google Scholar 

  • Hove JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919): 172–177

    Article  Google Scholar 

  • Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  • Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite element method a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61: 964–984

    Article  MATH  Google Scholar 

  • Idelsohn SR, Del Pin F, Oñate E, Rossi R (2008) Fluid–structure interacion problems including “added-mass effect”. Int J Numer Methods Eng (submitted)

  • Jansen KE, Shephard MS, Beall MW (2001) On anisotropic mesh generation and quality control in complex flow problems. In: 10th international meshing roundtable

  • Jiao X (2007) Face offsetting: a unified approach for explicit moving interfaces. J Comput Phys 220: 612–625

    Article  MATH  MathSciNet  Google Scholar 

  • Jiao X, Zha H (2008) Consistent computation of first- and second-order differential quantities for surface meshes. In: ACM solid and physical modeling symposium

  • Jiao X, Colombi A, Ni X, Hart J (2006) Anisotropic mesh adaptation for evolving triangulated surfaces. In: 15th international meshing roundtable

  • Jiao X, Einstein DR, Dyedov V, Carson JP (2009) Automatic identification and truncation of boundary outlets in complex imaging-derived biomedical geometries. Med Biol Eng Comput (submitted)

  • Johnson GA, Cofer GP, Gewalt SL, Hedlund LW (2002) Morphologic phenotyping with MR microscopy: the visible mouse. Radiology 222(3): 789–793

    Article  Google Scholar 

  • Khamayseh A, Hansen G (2007) Use of the spatial kd-tree in computational physics applications. Commun Comput Phys 2: 545–576

    MATH  Google Scholar 

  • Kostelec P, Weaver J, Healy DM Jr (1998) Multiresolution elastic image registration. Med Phys 25(9): 1593–1604

    Article  Google Scholar 

  • Kroger C, Drossinos Y (1997) Particle deposition in a turbulent boundary layer over a large particle size spectrum. J Aerosol Sci 28: 631–632

    Article  Google Scholar 

  • Kuprat AP, Einstein DR (2009) An anisotropic scale-invariant unstructured mesh generator suitable for volumetric imaging data. J Comput Phys 228: 619–640

    Article  MATH  MathSciNet  Google Scholar 

  • Labelle F, Shewchuk JR (2007) Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Trans Graph (ACM SIGGRAPH Confer Proc) 26(3): 1–57

    Google Scholar 

  • Longest WP (2003) Comparison of blood particle deposition models for non-parallel flow domains. J Biomech 36(3): 421–430

    Article  Google Scholar 

  • Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3d surface construction algorithm. Comput Graph 21: 163–169

    Article  Google Scholar 

  • Mironov V, Visconti RP, Markwald RR (2005) On the role of shear stress in cardiogenesis. Endothelium 12(5–6): 259–261

    Article  Google Scholar 

  • Moyle KR, Ventikos Y (2008) Local remeshing for large amplitude grid deformations. J Comput Phys 227: 2781–2793

    Article  MATH  MathSciNet  Google Scholar 

  • Remacle JF, Li X, Shephard MS, Flaherty JE (2005) Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods. Int J Numer Methods Eng 62: 899–923

    Article  MATH  MathSciNet  Google Scholar 

  • Si H (2008) Adaptive tetrahedral mesh generation by constrained Delaunay refinement. Int J Numer Methods Eng. doi:10.1002/nme.2318

  • Smits B (2005) Efficiency issues for ray tracing. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 courses, p 6. doi:10.1145/1198555.1198745

  • Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158: 155–196

    Article  MATH  MathSciNet  Google Scholar 

  • Treece GM, Prager RW, Gee AH (1999) Regularised marching tetrahedra: improved iso-surface extraction. Comput Graph 23(4): 583–598

    Article  Google Scholar 

  • Yashiro K, Shiratori H, Hamada H (2007) Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450(7167): 285–288

    Article  Google Scholar 

  • Zhang Y, Bazilevs Y, Goswami S, Bajaj C, Hughes TJR (2007) Patient-specific vascular nurbs modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196(29–30): 2943–2959

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang Y, Hughes TJR, Bajaj CL (2009) An automatic 3D mesh generation method for domains with multiple materials. Comput Methods Appl Mech Eng (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Carson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carson, J.P., Kuprat, A.P., Jiao, X. et al. Adaptive generation of multimaterial grids from imaging data for biomedical Lagrangian fluid–structure simulations. Biomech Model Mechanobiol 9, 187–201 (2010). https://doi.org/10.1007/s10237-009-0170-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-009-0170-5

Keywords

Navigation