Skip to main content

Advertisement

Log in

An efficient early warning system for typhoon storm surge based on time-varying advisories by coupled ADCIRC and SWAN

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

In order to mitigate storm surge impacts, precise surge guidance computations for forecasters must be finished within a short period of time to allow them to provide early warning to the public. For this purpose, a coupled ADCIRC and SWAN model was applied based on multiple scenario-based, deterministic model runs for each time-varying meteorological forecast advisory on a relatively lightweight mesh with 57 k nodes covering the North Western Pacific (NWP) ocean. The mesh was designed to achieve an optimal combination of speed and accuracy on a cost-effective parallel computer with 64 cores. These models were applied for two events in 2012: typhoon Bolaven (on the west coast of Korea) and typhoon Sanba (on the south coast of Korea). The surge results for a 72-h forecast yielded relative surge height error of 34.1 to 46.4 % in ADCIRC + SWAN. The surge results from a meteorological forecast 24 h from landfall improved to 21.7 to 26.8 %. Furthermore, surge elevation results progressively approached measured values (i.e., improved) with each successive typhoon advisory owing to diminishing uncertainties in the meteorological input. In conclusion, this new efficient early warning forecast guidance workflow successfully achieved its goals of real-time storm surge simulations for forecasters, early warning, and understanding of ocean dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Amante C, Eakins BW (2009) ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center Marine Geology and Geophysics Division Boulder, Colorado, 19 pp

    Google Scholar 

  • Blanton B, McGee J, Fleming J, Kaiser C, Kaiser H, Lander H, Luettich R, Dresback K, Kolar R (2012) Urgent computing of storm surge for North Carolina’s coast. Procedia Comput Sci 9:1677–1686. doi:10.1016/j.procs.2012.04.185

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions, 1. Model description and validation. J Geophys Res 104(C4):7649–7666. doi:10.1029/98JC02622

    Article  Google Scholar 

  • Dietrich JC (2010) Development and application of coupled hurricane wave and surge models for southern Louisiana. Dissertation, University of Notre Dame

  • Dietrich JC, Zijlema M, Westerink JJ, Holthuijsen LH, Dawson C, Luettich RA, Jensen RE, Smith JM, Stelling GS, Stone GW (2011) Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast Eng 58(1):45–65. doi:10.1016/j.coastaleng.2010.08.001

    Article  Google Scholar 

  • Dietrich JC, Tanaka S, Westerink JJ, Dawson CN, Luettich RA, Zijlema M, Holthuijsen LH, Smith JM, Westerink LG, Westerink HJ (2012) Performance of the unstructured-mesh, SWAN + ADCIRC model in computing hurricane waves and surge. J Sci Comput 52(2):468–497. doi:10.1007/s10915-011-9555-6

    Article  Google Scholar 

  • Dietrich JC, Dawson CN, Proft JM, Howard MT, Wells G, Fleming JG, Luettich RA, Westerink JJ, Cobell Z, Vitse M, Lander H, Blanton BO, Szpilka CM, Atkinson JH (2013a) Real-time forecasting and visualization of hurricane waves and storm surge using SWAN + ADCIRC and FigureGen. Comput Chall Geosci 156:49–70. doi:10.1007/978-1-4614-7434-0_3

    Article  Google Scholar 

  • Dietrich JC, Zijlema M, Allier PE, Holthuijsen LH, Booij N, Meixner JD, Proft JK, Dawson CN, Bender CJ, Naimaster A, Smith JM, Westerink JJ (2013b) Limiters for spectral propagation velocities in SWAN. Ocean Model 70:85–102. doi:10.1016/j.ocemod.2012.11.005

    Article  Google Scholar 

  • Fleming JG, Fulcher CW, Luettich RA, Estrade BD, Allen GD, Winer HS (2008) A real time storm surge forecasting system using ADCIRC. Estuar Coast Model 2007:893–912. doi:10.1061/40990(324)48

    Article  Google Scholar 

  • Forbes C, Luettich RA, Mattocks CA, Westerink JJ (2010) A retrospective evaluation of the storm surge produces by Hurricane Gustav (2008): forecast and hindcast results. Weather Forecast 25:1577–1602. doi:10.1175/2010WAF2222416.1

    Article  Google Scholar 

  • Hesser TJ, Cialone MA, Anderson ME (2013) Lake St. Clair: storm wave and water level modeling. ERDC/CHL TR-13-5. US Army Corps of Engineers Engineer Research and Development Center, Vicksburg

    Google Scholar 

  • Holland GJ (1980) An analytical model of the wind and pressure profiles in hurricanes. Mon Weather Rev 108:1212–1218. doi:10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2

    Article  Google Scholar 

  • Hope ME, Westerink JJ, Kennedy AB, Kerr PC, Dietrich JC, Dawson C, Bender CJ, Smith JM, Jensen RE, Zijlema M, Holthuijsen LH, Luettich RA, Powell MD, Cardone VJ, Cox AT, Pourtaheri H, Roberts HJ, Atkinson JH, Tanaka S, Westerink HJ, Westerink LG (2013) Hindcast and validation of Hurricane Ike (2008) waves, forerunner, and storm surge. J Geophys Res Oceans 118(9):4424–4460. doi:10.1002/jgrc.20314

  • Hsueh Y, Yuan D (1997) A numerical study of currents, heat advection, and sea-level fluctuations in the Yellow Sea in winter 1986. J Phys Oceanogr 27:2313–2326. doi:10.1175/1520-0485(1997)027<2313:ANSOCH>2.0.CO;2

    Article  Google Scholar 

  • Kennedy AB, Gravois U, Zachry BC, Westerink JJ, Hope ME, Dietrich JC, Powell MD, Cox AT, Luettich RA, Dean RG (2011) Origin of the Hurricane Ike forerunner surge. Geophys Res Lett 38(8): L08608 doi:10.1029/2011GL047090

  • Kerr PC, Donahue AS, Westerink JJ, Luettich RA, Zheng LY, Weisberg RH, Huang Y, Wang HV, Teng Y, Forrest DR, Roland A, Haase AT, Kramer AW, Taylor AA, Rhome JR, Feyen JC, Signell RP, Hanson JL, Hope ME, Estes RM, Dominguez RA, Dunbar RP, Semeraro LN, Westerink HJ, Kennedy AB, Smith JM, Powell MD, Cardone VJ, Cox AT (2013a) U.S. IOOS coastal and ocean modeling testbed: inter-model evaluation of tides, waves, and hurricane surge in the Gulf of Mexico. J Geophys Res Oceans 118(10):5129–5172. doi:10.1002/jgrc.20376

    Article  Google Scholar 

  • Kerr PC, Martyr RC, Donahue AS, Hope ME, Westerink JJ, Luettich RA, Kennedy AB, Dietrich JC, Dawson C, Westerink HJ (2013b) U.S. IOOS coastal and ocean modeling testbed: evaluation of tide, wave, and hurricane surge response sensitivities to mesh resolution and friction in the Gulf of Mexico. J Geophys Res Oceans 118(9):4633–4661. doi:10.1002/jgrc.20305

    Article  Google Scholar 

  • Lin L, Emanuel K, Oppenheimer M, Vanmarcke E (2012) Physically based assessment of hurricane surge threat under climate change. Nat Clim Chang 2:462–467. doi:10.1038/nclimate1389

    Article  Google Scholar 

  • Luettich RA, Westerink JJ, Scheffner NW (1992) ADCIRC: an advanced three-dimensional circulation model for shelves coasts and estuaries report 1: theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Dredging Research Program Technical Report DRP-92-6. US Army Corps of Engineers Waterways Experiment Station, Vicksburg, 137 pp

    Google Scholar 

  • Luettich RA, Wright LD, Signell R, Friedrichs C, Friedrichs M, Harding J, Fennel K, Howlett E, Graves S, Smith E, Crane G, Baltes R (2013) Introduction to special section on the U.S. IOOS coastal and ocean modeling testbed. J Geophys Res Oceans 118(12):6319–6328. doi:10.1002/2013JC008939

    Article  Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: a modern insight from FES2004. Ocean Dyn 56:394–415. doi:10.1007/s10236-006-0086-x

    Article  Google Scholar 

  • Mandli KT, Dawson CN (2014) Adaptive mesh refinement for storm surge. Ocean Model 75:36–50. doi:10.1016/j.ocemod.2014.01.002

    Article  Google Scholar 

  • Mattocks C, Forbes C (2008) A real-time, event-triggered storm surge forecasting system for the state of North Carolina. Ocean Model 25:95–119. doi:10.1016/j.ocemod.2008.06.008

    Article  Google Scholar 

  • Mattocks C, Forbes C, Ran L (2006) Design and implementation of a real-time storm surge and flood forecasting capability for the State of North Carolina. UNC-CEP Technical Report, University of North Carolina, Chapel Hill, 103 pp

  • Rogers WE, Kaihatu JM, Hsu L, Jensen RE, Dykes JM, Holland KT (2007) Forecasting and hindcasting waves with the SWAN model in the Southern California Bight. Coast Eng 54:1–15. doi:10.1016/j.coastaleng.2006.06.011

    Article  Google Scholar 

  • Seo SN (2008) Digital 30sec gridded bathymetric data of Korea marginal seas—KorBathy30s. J Korean Soc Coast Ocean Eng 20(1):110–120 (in Korean)

  • Suh SW, Lee HY (2012) Inundation simulation on a vertical dock using finite element storm surge model. J Korean Soc Coast Ocean Eng 24(4):235–246 (in Korean)

  • Suh SW, Lee HY, Kim HJ (2014) Spatio-temporal variability of tidal asymmetry due to multiple coastal constructions along the west coast of Korea. Estuar Coast Shelf Sci 151:336–346. doi:10.1016/j.ecss.2014.09.007

    Article  Google Scholar 

  • Taflanidis AA, Kennedy AB, Westerink JJ, Smith J, Cheung KF, Hope M, Tanaka S (2013) Rapid assessment of wave and surge risk during landfalling hurricanes: probabilistic approach. J Waterw Port Coast Ocean Eng 139(3):171–182. doi:10.1061/(ASCE)WW.1943-5460.0000178

    Article  Google Scholar 

  • Tanaka S, Bunya S, Westerink JJ, Dawson C, Luettich RA (2011) Scalability of an unstructured grid continuous Galerkin based hurricane storm surge model. J Sci Comput 46(3):329–358. doi:10.1007/s10915-010-9402-1

    Article  Google Scholar 

  • Taylor AA, Glahn B (2008) Probabilistic guidance for hurricane storm surge. Proc. 19th Conference on Probability and Statistics. New Orleans, Louisiana, USA 7.4

  • Veeramony J, Condon A, Hebert D (2012) Effect of coupling wave and flow dynamics on hurricane surge and inundation. Proc. twenty-second ISOPE, Rhodes, Greece 1503–1507

  • Wessel P, Smith WHF (2012) The generic mapping tools, GMT ver. 4.5.8 Technical Reference and Cookbook. 234 pp. http://www.soest.hawaii.edu/gmt

  • Xie L, Bao S, Pietrafesa LJ, Foley K, Fuentes M (2006) A real-time hurricane surface wind forecasting model: formulation and verification. Mon Weather Rev 134(5):1355–1370. doi:10.1175/MWR3126.1

    Article  Google Scholar 

  • Zheng L, Weisberg RH, Huang Y, Luettich RA, Westerink JJ, Kerr PC, Donahue AS, Crane G, Akli L (2013) Implications from the comparisons between two- and three-dimensional model simulations of the Hurricane Ike storm surge. J Geophys Res Oceans 118(7):3350–3369. doi:10.1002/jgrc.20248

Download references

Acknowledgments

This research was a part of the project entitled “Countermeasure system against hazards of typhoons and tsunamis in harbor zones—stage 2” of the Frontier Harbor Project funded by the Ministry of Oceans and Fisheries, Korea. We greatly appreciate the valuable comments and suggestions by the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Won Suh.

Additional information

Responsible Editor: Richard Signell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suh, S.W., Lee, H.Y., Kim, H.J. et al. An efficient early warning system for typhoon storm surge based on time-varying advisories by coupled ADCIRC and SWAN. Ocean Dynamics 65, 617–646 (2015). https://doi.org/10.1007/s10236-015-0820-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-015-0820-3

Keywords

Navigation