Skip to main content

Advertisement

Log in

Regional and global effects of southern ocean constraints in a global model

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Global ocean circulation models do not usually take high-latitude processes into account in an adequate form due to a limited model domain or insufficient resolution. Without the processes in key areas contributing to the lower part of the global thermohaline circulation, the characteristics and flow of deep and bottom waters often remain unrealistic in these models. In this study, various sections of the Bremerhaven Regional Ice Ocean Simulation model results are combined with a global inverse model by using temperature, salinity, and velocity constraints for the Hamburg Large Scale Geostrophic ocean general circulation model. The differences between the global model with and without additional constraints from the regional model demonstrate that the Weddell Sea circulation exerts a significant influence on the course of the Antarctic Circumpolar Current with consequences for Southern Ocean water mass characteristics and the spreading of deep and bottom waters in the South Atlantic. The influence of the Ross Sea is found to be less important in terms of global influences. However, regional changes in the Pacific sector of the Southern Ocean are found to be of Ross Sea origin. The additional constraints change the hydrographic conditions of the global model in the vicinity of the Antarctic Circumpolar Current in such a way that transport values, e.g., in Drake Passage no longer need to be prescribed to obtain observed transports. These changes not only improve the path and transport of the Antarctic Circumpolar Current but affect the meso- and large-scale circulation. With a higher (lower) mean Drake Passage transport, the mean Weddell Gyre transport is lower (higher). Furthermore, an increase (decrease) in the Antarctic Circumpolar Current leads to a decrease (increase) of the circum-Australian flow, i.e., a decrease (increase) of the Indonesian Throughflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Assmann KM, Timmermann R (2005) Variability of dense water formation in the Ross Sea. Ocean Dyn 55:68–87. doi:10.1017/S10236-004-0106-7

    Article  Google Scholar 

  • Assmann K, Hellmer HH, Beckmann A (2003) Seasonal variation in circulation and water mass distribution on the Ross Sea continental shelf. Antarct Sci 15(1):3–11. doi:10.1017/S0954102003001007

    Article  Google Scholar 

  • Beckmann A, Hellmer HH, Timmermann R (1999) A numerical model of the Weddell Sea: large-scale circulation and water mass distribution. J Geophys Res 104:23374–23391

    Article  Google Scholar 

  • Carmack EC (1977) Water characteristics of the Southern Ocean south of the Polar Front. In: Angel M (ed) A voyage of discovery, George Deacon 70th anniversary volume. Pergamon, Oxford, pp 15–41

    Google Scholar 

  • CLS (2008) SHOM98.2 mean sea surface. http://www.cls.fr/html/oceano/projects/mss/cls_shom_en.html

  • Conkright ME, Locarnini RA, Garcia HE, OBrien TD, Boyer TP, Stephens C, Antonov JI (2002) World ocean atlas 2001: objective analysis, data statistics and figures, CD-ROM documentation. National Oceanographic Data Center, Silver Springs, 17 pp

  • GFZ-G (2008) EIGEN-GRACE01S. http://op.gfz-potsdam.de/grace/index_GRACE.html

  • Emery WJ, Meincke J (1986) Global water masses: summary and review. Oceanol Acta 9:383–391

    Google Scholar 

  • Ganachaud A, Wunsch C, Marotzke J, Toole J (2000) Meridional overturning and large-scale circulation of the Indian Ocean. J Geophys Res 105:26117–26134

    Article  Google Scholar 

  • Gille ST (2002) Warming of the Southern Ocean since the 1950s. Science 295:1275–1277

    Article  Google Scholar 

  • Goose H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23337–23355

    Article  Google Scholar 

  • Gordon AL, Dwi Susanto R, Ffield A (1999) Throughflow within Makassar Strait. Geophys Res Lett 26:3325–3328

    Article  Google Scholar 

  • Gordon AL, Zambianchi E, Orsi A, Visbeck M, Giulivi CF, Whitworth III T, Spezie G (2004) Energetic plumes over the western Ross Sea continental slope. Geophys Res Lett 31. doi:10.1029/2004GL020785

  • Gouretski VV, Koltermann KP (2004) WOCE global hydrographic climatology. A Technical Report, Berichte des Bundesamtes für Seeschiffahrt und Hydrograhy, No. 35, 50 pp + 2 CD-ROm

  • von Gyldenfeldt AB, Fahrbach E, Garcia M, Schröder M (2002) Flow variability at the tip of the Antarctic Peninsula. Deep Sea Res II 49:4743–4766

    Article  Google Scholar 

  • Hall MM, Bryden HL (1982) Direct estimates and mechanisms of ocean heat-transport. Deep-Sea Res Part A 29:339–359

    Article  Google Scholar 

  • Hellmer HH, Schodlok MP, Wenzel M, Schröter JG (2005) On the influence of adequate Weddell Sea characteristics in a large-scale global ocean circulation model. Ocean Dyn 55(2):88–99. doi:10.1007/s10236-005-0112-4

    Article  Google Scholar 

  • Holfort J, Siedler G (2001) The meridional oceanic transports of heat and nutrients in the South Atlantic. J Phys Oceanogr 31:5–29

    Article  Google Scholar 

  • Ivchenko VO, Zalensy VB, Drinkwater MR (2004) Can the equatorial ocean quickly respond to Antarctic sea ice/salinity anomalies? Geophys Res Lett 31. doi:10.1029/2004GL020472

  • Jacobs SS, Amos AF, Bruchhausen PM (1970) Ross Sea oceanography and Antarctic bottom water formation. Deep Sea Res 17:935–962

    Google Scholar 

  • Jacobs SS, Giulivi CF, Mele PA (2002) Freshening of the Ross Sea during the late 20th century. Science 297:386–389

    Article  Google Scholar 

  • Jia Y (2003) Ocean heat transport and its relationship to ocean circulation in the CMIP coupled models. Clim Dyn 20:153–174

    Google Scholar 

  • Klatt O, Fahrbach E, Hoppema M, Rohardt G (2005) The transport of the Weddell Gyre across the prime meridian. Deep Sea Res II 52:513–528. doi:10.1016/j.dsr2.2004.12.015

    Article  Google Scholar 

  • Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604. doi:10.1029/2004GL021592

    Article  Google Scholar 

  • Locarnini RA, Whitworth III T, Nowlin Jr, WD (1993) The importance of the Scotia Sea on the outflow of Weddell Sea Deep Water. J Mar Res 51:135–153

    Article  Google Scholar 

  • Losch M, Heimbach P (2007) Adjoint sensitivity of an ocean general circulation model to bottom topography. J Phys Oceanogr 37:377–393. doi:10.1175/JPO3017.1

    Article  Google Scholar 

  • Macdonald AM (1998) The global ocean circulation: a hydrographic estimate and regional analysis. Prog Oceanogr 41:281–382

    Article  Google Scholar 

  • Maier-Reimer E, Mikolajewicz U (1991) The Hamburg large scale geostrophic ocean general circulation model (Cycle 1). Tech Rep No. 2. Deutsches Klimarechenzentrum, Hamburg

  • Maier-Reimer E, Mikolajewicz U, Hasselmann K (1993) Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. J Phys Oceanogr 23:731–757

    Article  Google Scholar 

  • Manabe S, Stouffer RJ, Spelman MJ, Bryan K (1991) Transient response of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part 1: annual mean response. J Climate 4:785–818

    Article  Google Scholar 

  • Meredith MP, Woodsworth PL, Hughes CW, Stepanov V (2004) Changes in the ocean transport through Drake passage during the 1980s and 1990s, forced by changes in the southern annular mode. Geophys Res Lett 31:L212305. doi:10.1029/2004GL021169

    Article  Google Scholar 

  • Meyers G (1996) Variation of Indonesian throughflow and the El Niño—southern oscillation. J Geophys Res 101:12255–12263

    Article  Google Scholar 

  • Mosby H (1934) The water of the Atlantic Ocean. Scientific results of the Norwegian Antarctic expedition 1927–1928, vol 11. Oslo, Norway, 131 pp

  • Naveira Garabato AC, McDonagh EL, Stevens DP, Heywood KJ, Sanders RJ (2002) On the export of Antarctic bottom water from the Weddell Sea. Deep Sea Res II 49:4715–4742

    Article  Google Scholar 

  • Olbers D, Wübber C (1991) The role of wind and buoyancy forcing of the Antarctic circumpolar current. In: Latif M (ed) Strategies for future climate research. MPI, Hamburg, pp 161–192

    Google Scholar 

  • Orsi AH, Johnson GC, Bullister JL (1999) Circulation, mixing, and production of Antarctic bottom water. Prog Oceanogr 43:55–109

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An impoved in situ and satellite SST analysis for climate. J Climate 15:1609–1625

    Article  Google Scholar 

  • Rintoul SR (1998) On the origin and influence of Adelie land bottom water. In: Jacobs SS, Weiss R (eds) Ocean, ice, and atmosphere: interactions at the Antarctic continental margin, Antarctic Research Series, vol 75. AGU, Washington, DC, pp 151–171

    Google Scholar 

  • Rintoul SR, Hughes C, Olbers D (2001) The antarctic circumpolar current system. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate. Academic, New York, pp 271–302

    Chapter  Google Scholar 

  • Rintoul SR (2007) Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific oceans. Geophys Res Lett 34:L06606

    Article  Google Scholar 

  • Schodlok MP, Hellmer HH, Beckmann A (2002) On the transport, variability, and origin of dense water masses crossing the South Scotia Ridge. Deep Sea Res II 49:4807–4825

    Article  Google Scholar 

  • Schodlok MP, Rodehacke CB, Hellmer HH, Beckmann A (2001) On the origin of the deep CFC maximun in the eastern Weddell Sea—numerical model results. Geophys Res Lett 28:2859–2862

    Article  Google Scholar 

  • Sloyan BM, Rintoul SR (2001) The Southern Ocean limb of the global deep overturning circulation. J Phys Oceanogr 31:143–173

    Article  Google Scholar 

  • Sloyan BM, Schröter J (2001) Correlation of ocean mass and temperature fluxes among hydropgraphic sections in the southern oceans. Geophys Res Lett 28:2049–2052

    Article  Google Scholar 

  • Stepanov VN, Hughes CW (2006) Propagation of signals in basin-scale ocean bottom pressure from a barotropic model. J Geophys Res 111:C12002. doi:10.1029/2005JC003450

    Article  Google Scholar 

  • Talley LD (2003) Shallow, intermediate, and deep overturning components of the global heat budget. J Phys Oceanogr 33:530–560

    Article  Google Scholar 

  • Wenzel M, Schröter J, Olbers D (2001) The annual cycle of the global ocean circulation as determined by 4D VAR data assimilation. Prog Oceanogr 48:73–119

    Article  Google Scholar 

  • Wenzel M, Schröter J (2002) Assimilation of TOPEX/POSEIDON data in a global ocean model: differences in 1995–1996. Phys Chem Earth 27:1433–1437

    Google Scholar 

  • Wenzel M, Schröter J (2007) The global ocean mass budget in 1993–2003 estimated from sea level change. J Phys Oceanogr 55:203–213. doi:10.1175/JPO3007.1

    Article  Google Scholar 

  • Willis JK, Roemmich D, Cornuelle B (2004) Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res 109:C12036 doi:10.1029/2003JC002260

    Article  Google Scholar 

  • Whitworth III T, Nowlin Jr WD, Worley SJ (1982) The net transport of the Antarctic circumpolar current through Drake passage. J Phys Oceanogr 12:960–971

    Article  Google Scholar 

  • Whitworth III T, Orsi AH, Kim S-J, Nowlin Jr WD, Locarnini RA (1998) Water masses and mixing near the Antarctic slope front. In: Jacobs SS, Weiss R (eds) Ocean, ice, and atmosphere: interactions at the Antarctic continental margin, Antarctic research series, vol 75. AGU, Washington, DC, pp 1–27

    Google Scholar 

  • Zhang KQ, Marotzke J (1999) The importance of open-boundary estimation for an Indian Ocean GCM-data synthesis. J Mar Res 57:305–334

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Schodlok.

Additional information

Responsible Editor: Steve Rintoul

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schodlok, M.P., Wenzel, M., Schröter, J.G. et al. Regional and global effects of southern ocean constraints in a global model. Ocean Dynamics 58, 155–168 (2008). https://doi.org/10.1007/s10236-008-0143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-008-0143-8

Keywords

Navigation