Skip to main content
Log in

On the boundary complex of the k-Cauchy–Fueter complex

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

The k-Cauchy–Fueter complex, \(k=0,1,\ldots \), in quaternionic analysis are the counterpart of the Dolbeault complex in the theory of several complex variables. In this paper, we construct explicitly boundary complexes of these complexes on boundaries of domains, corresponding to the tangential Cauchy–Riemann complex in complex analysis. They are only known boundary complexes outside of complex analysis that have interesting applications to the function theory. As an application, we establish the Hartogs–Bochner extension for k-regular functions, the quaternionic counterpart of holomorphic functions. These boundary complexes have a very simple form on a kind of quadratic hypersurfaces, which have the structure of right-type nilpotent Lie groups of step two. They allow us to introduce the quaternionic Monge–Ampère operator and open the door to investigate pluripotential theory on such groups. We also apply abstract duality theorem to boundary complexes to obtain the generalization of Malgrange’s vanishing theorem and the Hartogs–Bochner extension for k-CF functions, the quaternionic counterpart of CR functions, on this kind of groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

My manuscript has no associated data.

References

  1. Adams, W., Loustaunau, P., Palamodov, V., Struppa, D.: Hartogs’ phenomenon for polyregular functions and projective dimension of releted modules over a polynomial ring. Ann. Inst. Fourier 47, 623–640 (1997)

    Article  MATH  Google Scholar 

  2. Alesker, S.: Non-commmutative linear algebra and plurisubharmonic functions of quaternionic variables. Bull. Sci. Math. 127, 1–35 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreotti, A., Hill, C.: E.E. Levi convexity and the Hans Lewy problem. Ann. Scuola Norm. Super. Pisa 26, part I, 325–363 (1972)

  4. Andreotti, A., Hill, C.: E.E. Levi convexity and the Hans Lewy problem. Ann. Scuola Norm. Super. Pisa 26, part II, 747–806 (1972)

  5. Andreotti, A., Hill, C., Lojasiewicz, S., Mackichan, B.: Complexes of differential operators. Invent. Math. 35, 43–86 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andreotti, A., Nacinovich, M.: Noncharacteristic hypersurfaces for complexes of differential operators. Ann. Mat. Pura Appl. 125, 13–83 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baston, R.: Quaternionic complexes. J. Geom. Phys. 8, 29–52 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for their Sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  9. Brinkschulte, J., Hill, C., Nacinovich, M.: Malgrange’s vanishing theorem for weakly pseudoconcave CR manifolds. Manuscr. Math. 131, 503–506 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brinkschulte, J., Hill, C., Nacinovich, M.: On the nonvanishing of abstract Cauchy–Riemann cohomology groups. Math. Ann. 363, 1–15 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Bureš, J., Souček, V.: Complexes of invariant differential operators in several quaternionic variables. Complex Var. Elliptic Equ. 51(5–6), 463–487 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Bureš, J., Damiano, A., Sabadini, I.: Explicit resolutions for several Fueter operators. J. Geom. Phys. 57, 765–775 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, D.-C., Duong, X.T., Li, J., Wang, W., Wu, Q.Y.: An explicit formula of Cauchy–Szegő kernel for quaternionic Siegel upper half space and applications. Indiana Univ. Math. J. 70(6), 2451–2477 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang, D.-C., Markina, I., Wang, W.: On the Cauchy–Szegő kernel for quaternion Siegel upper half-space. Complex Anal. Oper. Theory 7, 1623–1654 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Colombo, F., Sabadini, I., Sommen, F., Struppa, D.: Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics, vol. 39. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  16. Colombo, F., Souček, V., Struppa, D.: Invariant resolutions for several Fueter operators. J. Geom. Phys. 56(7), 1175–1191 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Folland, G.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13, 161–207 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Henkin, G., Leiterer, J.: Andreotti–Grauert Theory by Integral Formulas, Progress in Math, vol. 74. Akademie-Verlag, Berlin and Birkhäuser-Verlag, Boston (1988)

  19. Hill, C., Nacinovich, M.: A weak pseudoconcavity condition for abstract almost CR manifolds. Invent. Math. 142, 251–283 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hill, C., Nacinovich, M.: Weak pseudoconcavity and the maximum modulus principle. Ann. Mat. Pura Appl. 182, 103–112 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hill, C., Nacinovich, M.: On the failure of the Poincaré Lemma for \(\bar{\partial }_M\). Math. Ann. 324, 213–224 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hill, C., Nacinovich, M.: On the failure of the Poincaré Lemma for \(\bar{\partial }_M\) II. Math. Ann. 335(1), 193–219 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Laurent-Thiébaut, C., Leiterer, J.: Some applications of Serre duality in CR manifolds. Nagoya Math. J. 154, 141156 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Laurent-Thiébaut, C., Leiterer, J.: Malgrange’s vanishing theorem in \(1\)-concave CR manifolds. Nagoya Math. J. 157, 59–72 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lavicka, R., Soucek, V., Wang, W.: General massless field equations for higher spin in dimension \(4\), to appear in Math. Meth. Appl. Sci. (2021). https://doi.org/10.1002/mma.7598

    Article  Google Scholar 

  26. Maggesi, M., Pertici, D., Tomassini, G.: Extension and tangential CRF conditions in quaternionic analysis. Ann. Mat. Pura Appl. 199, 2263–2289 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Métivier, G.: Hypoellipticité analytique sur des groupes nilpotents de rang \(2 \). Duke Math J. 47(1), 195–221 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nacinovich, M.: Complex analysis and complexes of differential operators. In: Springer LNM, vol. 287, pp. 105–195 (1973)

  29. Nacinovich, M.: On boundary Hilbert differential complexes. Ann. Polon. Math. 46, 213–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nacinovich, M., Porten, E.: Weak \(q\)-concavity conditions for CR manifolds. Ann. Mat. Pura Appl. 196, 1779–1817 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Penrose, R., Rindler, W.: Spinors and Space-Time, Vol. 1, Two-spinor calculus and relativistic fields, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  32. Penrose, R., Rindler, W.: Spinors and Space-Time, Vol. 2, Spinor and Twistor Methods in Space-Time Geometry, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  33. Porten, E.: The Hartogs phenomenon on weakly pseudoconcave hypersurfaces. Math. Ann. 354, 659–683 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ren, G.-Z., Shi, Y., Wang, W.: The tangential \(k\)-Cauchy-Fueter operator and \(k\)-CF functions over the Heisenberg group. Adv. Appl. Clifford Algebras 30, Article 20 (2020)

  35. Schaefer, H., Wolff, M.: Topological Vector Spaces, Graduate Texts in Math., vol. 3. Springer-Verlag, New York, Berlin (1999)

    Book  Google Scholar 

  36. Schwartz, L.: Théorie des distributions. Nouveau tirage, Paris, Hermann (1998)

    MATH  Google Scholar 

  37. Shi, Y., Wang, W.: The tangential \(k\)-Cauchy–Fueter complexes and Hartogs’ phenomenon over the right quaternionic Heisenberg group. Ann. Mat. Pura Appl. 199, 651–680 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wan, D.: A variational approach to the quaternionic Monge–Ampère equation. Ann. Mat. Pura Appl. 199, 2125–2150 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wan, D., Wang, W.: On quaternionic Monge–Ampère operator, closed positive currents and Lelong–Jensen type formula on the quaternionic space. Bull. Sci. Math. 141, 267–311 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, W.: The \(k\)-Cauchy–Fueter complex, Penrose transformation and Hartogs’ phenomenon for quaternionic \(k\)-regular functions. J. Geom. Phys. 60, 513–530 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, W.: On quaternionic complexes over unimodular quaternionic manifolds. Diff. Geom. Appl. 58, 227–253 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, W.: The Neumann problem for the \(k\)-Cauchy–Fueter complex over \(k\)-pseudoconvex domains in \( {\mathbb{R} }^4\) and the \(L^2\) estimate. J. Geom. Anal. 29, 1233–1258 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, W.: The tangential Cauchy–Fueter complex on the quaternionic Heisenberg group. J. Geom. Phys. 61, 363–380 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, W.: On the tangential Cauchy–Fueter operators on nondegenerate quadratic hypersurfaces in \({{\mathbb{H} }^2}\). Math. Nach. 286(13), 1353–1376 (2013)

    Article  MATH  Google Scholar 

  45. Wang, W.: The quaternionic Monge–Ampère operator and plurisubharmonic functions on the Heisenberg group. Math. Z. 298, 521–549 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by National Nature Science Foundation in China (No. 11971425).

8. Appendix

8. Appendix

The \(\sigma \)-th symmetric power \( \odot ^{\sigma }{\mathbb {C}}^{2 } \) is a subspace of \( \otimes ^{\sigma }{\mathbb {C}}^{2 } \), and an element of \(\odot ^{\sigma } {\mathbb {C}}^2 \) is given by a \(2^\sigma \)-tuple \( ( f_{\textbf{A} ' })\in \otimes ^{\sigma } {\mathbb {C}}^2\) with \(\textbf{A} '=A_1' \ldots A_\sigma '\) (\(A_1',\ldots , A_\sigma ' =0',1' \)) such that \( f_{\textbf{A} '} \) is invariant under permutations of subscripts, i.e.

$$\begin{aligned} f_{A_1' \ldots A_\sigma '} = f_{ A_{\pi (1)}'\ldots A_{\pi (\sigma )} '} \end{aligned}$$

for any \(\pi \in {S}_\sigma \), the group of permutations on \(\sigma \) letters. The symmetrization of indices is defined as

$$\begin{aligned} f_{\cdots (A_1'\ldots A_\sigma ')\cdots }: =\frac{1}{\sigma !}\sum _{\pi \in {S}_\sigma } f_{\cdots A_{\pi (1)}'\ldots A_{\pi (\sigma )}' \cdots }. \end{aligned}$$
(8.1)

In particular, if \((f_{A_1'\ldots A_\sigma '})\in \otimes ^\sigma {\mathbb {C}}^{2 }\) is symmetric in \(A_2'\ldots A_\sigma '\), then we have

$$\begin{aligned} f_{(A_1'\ldots A_\sigma ')}=\frac{1}{\sigma }\left( f_{A_1'A_2'\ldots A_\sigma '}+\cdots + f_{A_s'A_1'\ldots \widehat{A_s'}\ldots A_\sigma '}+\cdots + f_{A_\sigma 'A_1'\ldots A_{\sigma -1}' } \right) . \end{aligned}$$
(8.2)

For \(j=0,1,\cdots ,k-1 \), we write an element of \(\Gamma ({\mathbb {H}}^{n+1}, \mathcal {{V}}_j)\) as a tuple \(f=(f_{\textbf{A}'})\) with symmetric indices \(\textbf{A}'=A_1'\cdots A_{ \sigma _j }'\) and \(f_{ \textbf{A}'}\in \Gamma ({\mathbb {H}}^{n+1},\wedge ^{j}{\mathbb {C}}^{2(n+1)})\). \(\mathcal { {D}}_j \) is a differential operators of first order given by

$$\begin{aligned} \left( \mathcal {{D}}_jf\right) _{\textbf{A}'}= \sum _{A '=0',1'}d^{A '}f_{ A '\textbf{A}'}; \end{aligned}$$
(8.3)

while for \(j=k+1\cdots ,2n+1 \), we write an element of \(\Gamma ({\mathbb {H}}^{n+1}, \mathcal {{V}}_j)\) as a tuple \(f=(f^{ \textbf{A}'})\) with symmetric indices \(\textbf{A}' \) and \(f^{ \textbf{A}'}\in \Gamma ({\mathbb {H}}^{n+1},\wedge ^{j+1}{\mathbb {C}}^{2(n+1)})\). Then,

$$\begin{aligned} \left( \mathcal { {D}}_{j}f\right) ^{A '\textbf{A}'}= d^{(A '}f^{\textbf{A}')} , \end{aligned}$$
(8.4)

where \((\cdots )\) is the symmetrization of indices.

Define isomorphisms

$$\begin{aligned} \dot{{\varvec{\Pi }}}_j: \Gamma ({\mathbb {H}}^{n+1}, \mathcal {{V}}_j) \longrightarrow \Gamma \left( {\mathbb {H}}^{n+1}, {\mathcal {P}}_{\sigma _j } ({\mathbb {C}}^2) \otimes \wedge ^{\tau _j}{\mathbb {C}}^{2n +2} \right) . \end{aligned}$$
(8.5)

For \(j=0,1,\cdots ,k \), the isomorphism \( \dot{{\varvec{\Pi }}}_j\) is given by

$$\begin{aligned} \dot{{\varvec{\Pi }}}_j\left( f_{ \textbf{A} ' }\right) = f_{ a } \textbf{S}^{a}_{\sigma _j } , \end{aligned}$$
(8.6)

where \(f_{ a }:=f_{ \textbf{A} ' }\) with \(o( \textbf{A} ')=a\), and the summation is taken over \( a=0,1,\ldots ,\sigma _{j } \). If \(j=k+1,\cdots ,2n+1 \), the isomorphism \( \dot{{\varvec{\Pi }}}_j\) is given by

$$\begin{aligned} \dot{{\varvec{\Pi }}}_j\left( f ^{\textbf{A} ' }\right) = f^{ \textbf{A} ' }s_{\textbf{A}'}=f ^{a} \widetilde{ \textbf{S}}^{a}_{\sigma _j }\left( {\begin{array}{c}\sigma _j \\ a\end{array}}\right) \end{aligned}$$
(8.7)

where \(f ^{a } =f^{ \textbf{A} ' }\) with \(o( \textbf{A} ')=a\). Under this realization, operators \( {\mathcal {D}}_j\)’s in (1.6) in the k-Cauchy–Fueter complex is the same as (8.6)-(8.7) by the following proposition.

Proposition 8.1

For \(f\in \Gamma ({\mathbb {H}}^{n+1}, \mathcal {{V}}_j )\), we have

$$\begin{aligned} \dot{{\varvec{\Pi }}}_{j+1}( {\mathcal {D}}_jf) = \left\{ \begin{array}{ll} \partial _{A'} d^{ {A} '}\dot{{\varvec{\Pi }}}_j( f),\quad &{}\textrm{if}\quad j=0, \ldots , k-1,\\ s_{A'} d^{ {A} '}\dot{{\varvec{\Pi }}}_j( f) ,\quad &{}\textrm{if}\quad j=k+1,\ldots ,2n+1. \end{array}\right. \end{aligned}$$

Proof

Note that for \(j=0, \ldots , k-1\),

$$\begin{aligned} \begin{aligned} \partial _{A'} d^{A'}\left( f_{ a } \textbf{S}^{a}_{\sigma _j } \right)&= d^{0'} f_{ a } \textbf{S}^{a}_{\sigma _{j+1 } }+ d^{1'} f_{ a } \textbf{S}^{a-1}_{\sigma _{j+1 } } = \left( d^{0'} f_{ b }+d^{1'} f_{b+1}\right) \textbf{S}^{b}_{\sigma _{j+1 }} , \end{aligned} \end{aligned}$$

by (2.5), where b is taken over \(0,1,\ldots ,\sigma _{j+1}=\sigma _{j }-1\). Apply the mapping \(\dot{{\varvec{\Pi }}}_{j+1}^{-1} \) to get

$$\begin{aligned} \begin{aligned} \left[ \dot{{\varvec{\Pi }}}^{-1}_{j+1}\left( \partial _{A'} d^{ {A} '}\dot{{\varvec{\Pi }}}_j( f)\right) \right] _{ \textbf{A} ' }&= d^{0'} f_{0' \textbf{A} ' }+d^{1'} f_{1' \textbf{A} ' } . \end{aligned} \end{aligned}$$

For \(j=k+1,\cdots ,2n+1\), noting that \(\sigma _{j+1 }=\sigma _{j }+1\), we get

$$\begin{aligned} \begin{aligned} s_{A'} d^{A'}\left( f ^{ a } \widetilde{ \textbf{S}}^{a}_{\sigma _j } \left( {\begin{array}{c}\sigma _j \\ a\end{array}}\right) \right)&= \left( d^{0'} f ^{ a } \widetilde{ \textbf{S}}^{a}_{\sigma _j+1 }+ d^{1'} f ^{ a } \widetilde{ \textbf{S}}^{a+1}_{\sigma _j+1 }\right) \left( {\begin{array}{c}\sigma _j \\ a\end{array}}\right) \\&=\left( \frac{ \sigma _{j+1 }-(a+1)}{\sigma _{j+1 }}d^{0'} f ^{ a+1 } + \frac{a+1}{\sigma _{j+1 }}d^{1'} f ^{ a} \right) \widetilde{ \textbf{S}}^{a+1}_{\sigma _{j+1 } } \left( {\begin{array}{c} {\sigma _{j+1 } }\\ a+1\end{array}}\right) . \end{aligned} \end{aligned}$$

Thus, for \(A'\textbf{A} '\) with \(|A'\textbf{A} '|=\sigma _{j+1 }\) and \(o(A'\textbf{A} ')=a+1\), we have

$$\begin{aligned} \begin{aligned} \left[ \dot{{\varvec{\Pi }}}^{-1}_{j+1}\left( s_{A'} d^{ {A} '} \dot{{\varvec{\Pi }}}_j( f)\right) \right] ^{ A'\textbf{A} ' }&=\frac{ \sigma _{j+1 }-(a+1)}{\sigma _{j+1 }} d^{0'}f^{\scriptstyle 0'\ldots 0'\overbrace{\scriptstyle 1' \ldots 1'}^{a+1} }+ \frac{a+1}{\sigma _{j+1 }} d^{1'} f^{\scriptstyle 0'\ldots 0'\overbrace{\scriptstyle 1' \ldots 1' }^{a } } \\ {}&= d^{(A'}f^{ \textbf{A} ') } \end{aligned} \end{aligned}$$

by (8.2). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W. On the boundary complex of the k-Cauchy–Fueter complex. Annali di Matematica 202, 2255–2291 (2023). https://doi.org/10.1007/s10231-023-01319-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-023-01319-w

Keywords

Mathematics Subject Classification

Navigation