Skip to main content

Advertisement

Log in

The Fundamental Blossoming Inequality in Chebyshev Spaces—I: Applications to Schur Functions

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

A classical theorem by Chebyshev says how to obtain the minimum and maximum values of a symmetric multiaffine function of n variables with a prescribed sum. We show that, given two functions in an Extended Chebyshev space good for design, a similar result can be stated for the minimum and maximum values of the blossom of the first function with a prescribed value for the blossom of the second one. We give a simple geometric condition on the control polygon of the planar parametric curve defined by the pair of functions ensuring the uniqueness of the solution to the corresponding optimization problem. This provides us with a fundamental blossoming inequality associated with each Extended Chebyshev space good for design. This inequality proves to be a very powerful tool to derive many classical or new interesting inequalities. For instance, applied to Müntz spaces and to rational Müntz spaces, it provides us with new inequalities involving Schur functions which generalize the classical MacLaurin’s and Newton’s inequalities. This work definitely demonstrates that, via blossoms, CAGD techniques can have important implications in other mathematical domains, e.g., combinatorics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Ait-Haddou, L. Biard, and M. A. Slawinski, Minimizing blossoms under symmetric linear constraints, Comput. Aided Geom. Design 19 (2002), 421–431.

    Article  MathSciNet  Google Scholar 

  2. R. Ait-Haddou, S. Yusuke, and T. Nomura, Chebyshev blossoming in Müntz spaces: Toward shaping with Young diagrams, J. Comput. Appl. Math. 247 (2013), 172-208.

  3. H. Alzer, The inequality of Ky Fan and related results, Acta Appl. Math. 38 (1995), 305–354.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. S. Bullen, Handbook of Means and their Inequalities, in: Mathematics and its Applications, 560, Kluwer Academic Publishers Group, Dordrecht, 2003, Revised from the 1988 original [P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and their Inequalities, Reidel, Dordrecht; MR0947142]

  5. P. Chebyshev, Demonstration élémentaire d’une proposition générale de la théorie des probabilités, J. Reine Angew. Math. 33 (1846), 259–267.

    MathSciNet  Google Scholar 

  6. A. Cuttler, C. Greene, and M. Skandera. Inequalities for symmetric means, European J. Combinatorics 32 (2011), 745–761.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Gorin and G. Panova, Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory, Ann. Probab. 43 (2015), 3052–3132.

    Article  MathSciNet  MATH  Google Scholar 

  8. Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87–120.

  9. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1934.

    MATH  Google Scholar 

  10. W. Hoeffding, On the distribution of the number of successes in independent trials, Ann. Math. Statist. 27 (1956), 713–721.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Horwitz, Means, generalized divided differences, and intersections of osculating hyperplanes, J. Math. Anal. Appl. 200 (1996), 126–148.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Itzykson and J. B. Zuber, The planar approximation. II, J. Math. Phys. 21 (1980), 411–421.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Keilson, A theorem on optimum allocation for a class of symmetric multilinear return functions, J. Math. Anal. Appl. 15 (1966), 269–272 .

    Article  MathSciNet  MATH  Google Scholar 

  14. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, second edition, 1995.

  15. M.-L. Mazure, Vandermonde type determinants and blossoming, Adv. Comput. Math. 8 (1998), 291–315.

    Article  MathSciNet  MATH  Google Scholar 

  16. M.-L. Mazure and P.-J. Laurent, Nested sequences of Chebyshev spaces, Math. Mod. Num. Anal. 32 (1998), 773–788.

    Article  MathSciNet  MATH  Google Scholar 

  17. M.-L. Mazure, Blossoming: a geometrical approach, Constr. Approx. 15 (1999), 33–68.

    Article  MathSciNet  MATH  Google Scholar 

  18. M.-L. Mazure, Chebyshev splines beyond total positivity, Adv. Comput. Math. 14 (2001), 129–156.

    Article  MathSciNet  MATH  Google Scholar 

  19. M.-L. Mazure, Chebyshev spaces and Bernstein bases, Constr. Approx. 22 (2005), 347–363.

    Article  MathSciNet  MATH  Google Scholar 

  20. M.-L. Mazure, Ready-to-blossom bases in Chebyshev spaces, in Topics in Multivariate Approximation and Interpolation, K. Jetter et al (eds.), Elsevier, Amsterdam, 2006, pp. 109–148.

    Chapter  Google Scholar 

  21. M.-L. Mazure, Bernstein-type operators in Chebyshev spaces, Numer. Algorithms 52 (2009), 93–128.

    Article  MathSciNet  MATH  Google Scholar 

  22. M.-L. Mazure, Finding all systems of weight functions associated with a given Extended Chebyshev space, J. Approx. Theory 163 (2011), 363–376.

    Article  MathSciNet  MATH  Google Scholar 

  23. M.-L. Mazure, How to build all Chebyshevian spline spaces good for Geometric Design, Numer. Math. 119 (2011), 517–556.

    Article  MathSciNet  MATH  Google Scholar 

  24. M.-L. Mazure, Extended Chebyshev spaces in rationality, BIT Num. Math. 53 (2013), 1013–1045.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. O. Pittenger, The logarithmic mean in n variables, Amer. Math. Monthly 92 (1985), 99–104.

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Pottmann, The geometry of Tchebycheffian splines, Comput. Aided Geom. Design 10 (1993), 181–210.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Ramshaw, Blossoms are polar forms, Comput. Aided Geom. Design 6 (1989), 323–358.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Springer-Verlag, New York, 2001.

    Book  MATH  Google Scholar 

  29. H.-P. Seidel, New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree, Math. Model. Numer. Anal. 26 (1992), 149–176.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Sra, On inequalities for normalized Schur functions, Europ. Combin. 51 (2016), 492–494.

    Article  MathSciNet  MATH  Google Scholar 

  31. K. B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag. 48 Z (1975), 87–92.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laurence Mazure.

Additional information

Communicated by Nira Dyn.

The research of Rachid Ait-Haddou was supported by KAUST.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait-Haddou, R., Mazure, ML. The Fundamental Blossoming Inequality in Chebyshev Spaces—I: Applications to Schur Functions. Found Comput Math 18, 135–158 (2018). https://doi.org/10.1007/s10208-016-9334-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-016-9334-8

Keywords

Mathematics Subject Classification

Navigation