Skip to main content

Advertisement

Log in

Optimal switch from a fossil-fueled to an electric vehicle

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

In this paper we propose and solve a real options model for the optimal adoption of an electric vehicle. A policymaker promotes the abeyance of fossil-fueled vehicles through an incentive, and the representative fossil-fueled vehicle’s owner decides the time at which buying an electric vehicle, while minimizing a certain expected cost. This involves a combination of various types of costs: the stochastic opportunity cost of driving one-unit distance with a traditional fossil-fueled vehicle instead of an electric one, the cost associated to traffic bans, and the net purchase cost. After determining the optimal switching time and the minimal cost function for a general diffusive opportunity cost, we specialize to the case of a mean-reverting process. In such a setting, we provide a model calibration on real data from Italy, and we study the dependency of the optimal switching time with respect to the model’s parameters. Moreover, we study the effect of traffic bans and incentive on the expected optimal switching time. We observe that incentive and traffic bans on fossil-fueled transport can be used as effective tools in the hand of the policymaker to encourage the adoption of electric vehicles and hence to reduce air pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. As it is discussed in Introduction, X can be thought of as a function of the difference in prices of fossil fuel and electricity.

  2. In many Italian cities, air pollution has spiked above the safety threshold of 50 \(\frac{\mu g}{m^3}\) for many consecutive days and several cities have introduced restrictions on driving such as a ban on fossil-fueled vehicles. Air pollution is typically worst in Northern Italy, where densely populated cities, industry and farming create emissions and mountains trap it in low-lying plains. In the Italian context, we refer to the Temporary Limitations of 1\(^{\text {st }}\)Level to Road Traffic of the document New Program Agreement for the Coordinated and Joint Adoption of Measures to Improve Air Quality in the Po Valley signed in Bologna on June \(9^{\text {th}}\), 2017 by Italian Minister Galletti and the presidents of the regions of Po Basin (Emilia Romagna, Veneto, Lombardy and Piedmont) and adopted by Lombardy region with D.G.R. Number X/6675 of July \(06^{\text {th}}\), 2017. See Regione Lombardia (2017).

  3. As a matter of fact, (20) is equivalent to integral equation (15)—see (39) and (43) in Appendix 2—and can be obtained via imposing the classical “smooth-pasting” and “smooth-fit” conditions.

  4. For Emilia Romagna region, in each zone, the daily PM\(_{10}\) concentration is represented by the worst daily concentration. In each zone of the other regions, the daily PM\(_{10}\) concentration is calculated averaging the 24-hour concentration.

  5. Our numerical results are not affected by this choice and are in fact robust with respect to variations of \(\rho \).

  6. The cost of each traffic ban is subjective, and it represents the economic penalty that the fossil-fueled vehicle owner incurs looking for alternative transportation, such as the inconvenient of different transportation schedule, possible delay and ticket payment.

References

  • Abdul-Manan, A.: Uncertainty and differences in GHG emissions between electric and conventional gasoline vehicles with implications for transport policy making. Energy Policy 87, 1–7 (2015)

    Article  Google Scholar 

  • Agaton, C., Guno, C., Villanueva, R., Villanueva, R.: Diesel or electric jeepney? A case study of transport investment in the philippines using the real options approach. World Electric Veh. J. 10(3), 51 (2019)

    Article  Google Scholar 

  • Alvarez, L.H.: Reward functionals, salvage values, and optimal stopping. Math. Methods Oper. Res. 54(2), 315–337 (2001)

    Article  Google Scholar 

  • Ansaripoor, A.H., Oliveira, F.S.: Flexible lease contracts in the fleet replacement problem with alternative fuel vehicles: a real-options approach. Eur. J. Oper. Res. 266(1), 316–327 (2018)

    Article  Google Scholar 

  • Audimob.: (2019) 16-esimo rapporto sulla mobilità degli italiani. Technical report, High Institute for Transport Education and Research

  • Belis, C., Karagulian, F., Larsen, B.R., Hopke, P.: Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos. Environ. 69, 94–108 (2013)

    Article  Google Scholar 

  • Bigerna, S., Wen, X., Hagspiel, V., Kort, P.: Flexible lease contracts in the fleet replacement problem with alternative fuel vehicles: a real-options approach. Eur. J. Oper. Res. 279(2), 635–644 (2019)

    Article  Google Scholar 

  • Borodin, W., Salminen, P.: Handbook of Brownian Motion-Facts and Formulae, 2nd edn. Birkhäuser, Basel (2002)

    Book  Google Scholar 

  • Buekers, J., Van Holderbeke, M., Bierkens, J., Panis, L.: Health and environmental benefits related to electric vehicle introduction in EU countries. Transp. Res. Part D Transp. Environ. 33, 26–38 (2014)

    Article  Google Scholar 

  • Canadell, J., Le Quere, C., Raupach, M., Field, C., Buitenhuis, E., Ciais, P., Marland, G.: Contributions to accelerating atmospheric CO\(_2\) growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. 104(47), 18866–18870 (2007)

    Article  Google Scholar 

  • Cansino JM., Sánchez-Braza A., Sanz-Díaz T.: Policy instruments to promote electro-mobility in the EU28: a comprehensive review. Sustainability 10(7):2507 (2018)

  • Casals, L., Martinez Laserna, E., García, B., Nieto, N.: Sustainability analysis of the electric vehicle use in Europe for CO\(_2\) emissions reduction. J. Clean. Prod. 127, 425–437 (2016)

    Article  Google Scholar 

  • Chen, Z., Hao, X., Zhang, X., Chen, F.: Have traffic restrictions improved air quality? A shock from COVID-19. J. Clean. Prod. 279, 123622 (2020)

    Article  Google Scholar 

  • Colvile, R., Hutchinson, E., Mindell, J., Warren, R.: The transport sector as a source of air pollution. Atmos. Environ. 35(9), 1537–1565 (2001)

    Article  Google Scholar 

  • De Bruyn, S., De Vries, J.: Health Costs of Air Pollution in European Cities and the Linkage with Transport. Technical repor, CE Delft, https://www.cedelft.eu/en/publications/2534/health-costs-of-air-pollution-in-european-cities-and-the-linkage-with-transport (2020)

  • Nazionale per la Protezione dell’Ambiente Emissioni e qualità dell’Aria S.: Emissioni e Qualità dell’Aria. https://www.snpambiente.it/dati/qualita-dellaria/ (2018)

  • Ferrari, G., Koch, T.: An optimal extraction problem with price impact. Appl. Math. Optim. 9, 1–40 (2019a)

    Google Scholar 

  • Ferrari, G., Koch, T.: On a Strategic model of pollution control. Ann. Oper. Res. 275(2), 297–319 (2019b)

    Article  Google Scholar 

  • Gautam, D., Bolia, N.B.: Air pollution: impact and interventions. Air Quality Atmos. Health 13(2), 209–223 (2020)

    Article  Google Scholar 

  • Gualtieri, G., Brilli, L., Carotenuto, F., Vagnoli, C., Zaldei, A., Gioli, B.: Quantifying road traffic impact on air quality in Urban Areas: a Covid19-induced lockdown analysis in Italy. Environ. Pollut. 267, 115682 (2020)

    Article  Google Scholar 

  • He, H., Fan, J., Li, Y., Li, J.: When to switch to a hybrid electric vehicle: a replacement optimisation decision. J. Clean. Prod. 148, 295–303 (2017)

    Article  Google Scholar 

  • Huisingh, D., Zhang, Z., Moore, J.C., Qiao, Q., Li, Q.: recent advances in carbon emissions reduction: policies, technologies, monitoring, assessment and modeling. J. Clean. Prod. 103, 1–12 (2015)

    Article  Google Scholar 

  • Italian Ministry of Economic Development: Monthly Fuel Prices. https://dgsaie.mise.gov.it/prezzi_carburanti_mensili.php?pid=2&lang=en_US (2019)

  • Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer, Berlin (2009)

    Book  Google Scholar 

  • Kang, N., Bayrak, A.E., Papalambros, P.Y.: Robustness and real options for vehicle design and investment decisions under gas price and regulatory uncertainties. J. Mech. Des. 140(10), 56 (2018)

    Article  Google Scholar 

  • Karagulian, F., Belis, C., Dora, C., Prüss Ustün, A., Bonjour, S., Adair Rohani, H., Amann, M.: Contributions to Cities’ ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmos. Environ. 120, 475–483 (2015)

  • Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)

    Google Scholar 

  • Laberteaux, K., Hamza, K.: A study on opportune reduction in greenhouse gas emissions via adoption of electric drive vehicles in light duty vehicle fleets. Transp. Res. Part D Transp. Environ. 63, 839–854 (2018)

    Article  Google Scholar 

  • Liu, F., Wang, M., Zheng, M.: Effects of COVID-19 lockdown on global air quality and health. Sci. Total Environ. 755, 142533 (2020)

    Article  Google Scholar 

  • Moon, S., Lee, D.J.: An optimal electric vehicle investment model for consumers using total cost of ownership: a real option approach. Appl. Energy 253, 113494 (2019)

    Article  Google Scholar 

  • Nichols, B., Kockelman, K., Reiter, M.: Air quality impacts of electric vehicle adoption in Texas. Transp. Res. Part D Transp. Environ. 34, 208–218 (2015)

    Article  Google Scholar 

  • Nishihara, M.: Hybrid or electric vehicles? A real options perspective. Oper. Res. Lett. 38(2), 87–93 (2010)

    Article  Google Scholar 

  • Onat, N., Kucukvar, M., Tatari, O.: Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States. Appl. Energy 150, 36–49 (2015)

    Article  Google Scholar 

  • Health Organization W (2019) World Health Statistics 2019: Monitoring Health for the SDGs, Sustainable Development Goals. Technical report

  • Peskir, G., Shiryaev, A.: Optimal Stopping and Free-Boundary Problems. Springer, Berlin (2006)

    Google Scholar 

  • Pindyck, R.S.: Optimal Timing Problems in Environmental Economics. J. Econ. Dyn. Control 26(9–10), 1677–1697 (2002)

    Article  Google Scholar 

  • Plötz P., Gnann T., Wietschel M.: (2012) Total Ownership Cost Projection for the German Electric Vehicle Market with Implications for its Future Power and Electricity Demand. In: 7th Conference on Energy Economics and Technology Infrastructure for the Energy Transformation, vol 27, p. 12

  • Regione Lombardia: Deliberazione x/ 6675 del 07 giugno 2017. https://www.regione.lombardia.it/wps/wcm/connect/1c8ba29c-9036-4a33-8b95-e3244e6e1190/dgr+6675+del+7+giugno+2017.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-1c8ba29c-9036-4a33-8b95-e3244e6e1190-mDYplKc (2017)

  • Soret, A., Guevara, M., Baldasano, J.: The potential impacts of electric vehicles on air quality in the Urban Areas of Barcelona and Madrid (Spain). Atmos. Environ. 99, 51–63 (2014)

    Article  Google Scholar 

  • Statista: Sales volume of the leading electric car models in Italy in \(2017\) and \(2018\). https://www.statista.com/statistics/777803/leading-electric-car-models-sold-in-italy/ (2019)

  • Terna SpA: The statistical data on electricity in Italy. https://www.terna.it/en/electric-system/statistical-data-forecast/statistical-publications (2019)

  • Yamashita, D., Niimura, T., Takamori, H., Wang, T., Yokoyama, R.: Plug-in electric vehicle markets and their infrastructure investment policies under fuel economy uncertainty. Int. J. Real Options Strat. 1, 39–60 (2013)

    Article  Google Scholar 

  • Zhao, S.J., Heywood, J.B.: Projected pathways and environmental impact of China’s electrified passenger vehicles. Transp. Res. Part D Transp. Environ. 53, 334–353 (2017)

Download references

Acknowledgements

The authors thank ARPA Lombardia, ARPA Veneto, ARPA Emilia Romagna e ARPA Piemonte for supplying the data of the day alert. This work was initiated, while G. Rizzini was visiting the University of Bielefeld, working under the supervision of G. Ferrari and M.D. Schmeck. G. Rizzini thanks the Center for Mathematical Economics (IMW) of Bielefeld University for the hospitality.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Rizzini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A. Facts on the underlying diffusion

Here we collect some properties of the process X. We refer the reader to Ch. II in Borodin and Salminen (2002) for further details. For some reference point \(\tilde{x}\in \mathcal {I}\), we introduce the derivative of the scale function of \(\left\{ X_{t}^{x}\right\} _{t\ge 0}\) as

$$\begin{aligned} S^{\prime }\left( x\right) := \exp \left\{ \displaystyle -\int _{\tilde{x}}^x \frac{2\mu \left( y\right) }{\sigma ^{2}\left( y\right) }dy\right\} , \quad x\in \mathcal {I}\text {.} \end{aligned}$$
(29)

Moreover, we introduce the speed measure density of \(\left\{ X_{t}^{x}\right\} _{t\ge 0}\) as

$$\begin{aligned} m^{\prime }\left( x\right) :=\frac{2}{\sigma ^{2}\left( x\right) S^{\prime }\left( x\right) }, \quad x\in \mathcal {I}\text {.} \end{aligned}$$
(30)

For a given parameter \(\rho >0\) (representing in the model the subjective discount factor of the fossil-fueled vehicle owner) we introduce the functions \(\psi _{\rho } \) and \(\varphi _{\rho } \) as the fundamental solutions to the ordinary differential equation (ODE)

$$\begin{aligned} \left( \mathcal {L}_{X}-\rho \right) u\left( x\right) =0 \text {, \ }x\in \mathcal {I}\text {.} \end{aligned}$$
(31)

The function \(\psi _{\rho }\) can be chosen to be strictly increasing, while \(\varphi _{\rho } \) strictly decreasing; both \(\psi _{\rho } \) and \(\varphi _{\rho } \) are strictly positive. The Wronskian between \(\psi _{\rho } \) and \(\varphi _{\rho } \) (normalized by the scale function density) is the positive constant

$$\begin{aligned} W:=\frac{\psi _{\rho }^{\prime }\left( x\right) \varphi _{\rho }\left( x\right) -\psi _{\rho }\left( x\right) \varphi _{\rho }^{\prime }\left( x\right) }{S^{\prime }\left( x\right) }> 0 \text {, } x\in \mathcal {I}\text {.} \end{aligned}$$

For future use, note that, by the linear independence of \(\psi _{\rho } \) and \(\varphi _{\rho }\), any solution to (31) can be written as

$$\begin{aligned} u\left( x\right) =A\psi _{\rho }\left( x\right) +B\varphi _{\rho }\left( x\right) \text {,} x \in \mathcal {I}, \end{aligned}$$

for some suitable parameters A and B.

We now recall additional properties of the fundamental solution to (31) \(\psi _{\rho }\) and \(\varphi _{\rho }\). The fact that \(\underline{x}\) and \(\overline{x}\) are assumed to be natural (i.e., unattainable) translates into the analytic conditions:

$$\begin{aligned}&\lim _{x \downarrow \underline{x}}\psi (x) = 0,\,\,\,\,\lim _{x \downarrow \underline{x}}\varphi (x) = + \infty ,\,\,\,\,\lim _{x \uparrow \overline{x}}\psi (x) = + \infty ,\,\,\,\,\lim _{x \uparrow \overline{x}}\varphi (x) = 0, \end{aligned}$$
(32)
$$\begin{aligned}&\lim _{x \downarrow \underline{x}}\frac{\psi '(x)}{S'(x)} = 0,\,\,\,\,\lim _{x \downarrow \underline{x}}\frac{\varphi '(x)}{S'(x)} = -\infty ,\,\,\,\,\lim _{x \uparrow \overline{x}}\frac{\psi '(x)}{S'(x)} = + \infty ,\,\,\,\,\lim _{x \uparrow \overline{x}}\frac{\varphi '(x)}{S'(x)} = 0. \end{aligned}$$
(33)

Furthermore, for any \(\underline{x}<\alpha<\beta <\bar{x}\), one has

$$\begin{aligned} \frac{\psi _{\rho }^{\prime }\left( \beta \right) }{S^{\prime }\left( \beta \right) }-\frac{\psi _{\rho }^{\prime }\left( \alpha \right) }{S^{\prime }\left( \alpha \right) }=\rho \int _{\alpha }^{\beta }\psi _{\rho }\left( y\right) m^{\prime }\left( y\right) dy\text {,} \end{aligned}$$
(34)

and

$$\begin{aligned} \frac{\varphi _{\rho }^{\prime }\left( \beta \right) }{S^{\prime }\left( \beta \right) }-\frac{\varphi _{\rho }^{\prime }\left( \alpha \right) }{S^{\prime }\left( \alpha \right) }= \rho \int _{\alpha }^{\beta }\varphi _{\rho }\left( y\right) m^{\prime }\left( y\right) dy\text {.} \end{aligned}$$
(35)

Finally, it is also worth noticing the probabilistic representation of the fundamental solutions \(\psi _{\rho } \) and \(\varphi _{\rho } \) in terms of the Laplace transform of hitting times. Letting \(\tau _y := \inf \{t \ge 0: X_t =y\}\), \(x, y \in \mathcal {I}\), then

$$\begin{aligned} \mathbb {E}_{x}\left[ e^{-\rho \tau _y}\right] =\left\{ \begin{array} [c]{ccc} \frac{\displaystyle \psi _{\rho }\left( x\right) }{\displaystyle \psi _{\rho }\left( y\right) } &{} \text {for} &{} x<y,\\ \frac{\displaystyle \varphi _{\rho }\left( x\right) }{\displaystyle \varphi _{\rho }\left( y\right) } &{} \text {for} &{} x>y. \end{array} \right. \end{aligned}$$
(36)

B. Proof of Theorem 21

Proof

We here prove Theorem 21 by following arguments and techniques as those in Alvarez (2001), among others.

Step 1. We start with the most relevant case in which \(\lim _{x \rightarrow \underline{x}} \left( \ell x + \lambda c \right)< \rho \left( I-k\right) <\lim _{x \rightarrow \overline{x}} \left( \ell x + \lambda c \right) \). As already discussed, since \(x \mapsto \ell x + \lambda c \) is increasing, we expect that the optimal switching rule is of the form \(\tau ^* = \inf \{t \ge 0: X_t^x \ge x^*\}\), for some \(x^* \in \mathcal {I}\) to be found. This guess leads to the candidate value function \(\widehat{\mathcal {U}}\) given by

$$\begin{aligned} \widehat{\mathcal {U}}\left( x\right) :=\left\{ \begin{array} [c]{lll} \left( I-k-\widehat{V}\left( x^* \right) \right) \mathbb {E}_{x}\left[ e^{-\rho \tau ^{*}}\right] \text {,} &{} \text {for} &{} x<x^{*} \text {,}\\ I-k-\widehat{V}\left( x\right) \text {,} &{} \text {for} &{} x\ge x^{*} \text {.} \end{array} \right. \end{aligned}$$
(37)

Exploiting the probabilistic representation of \(\mathbb {E}_{x}\left[ e^{-\rho \tau ^*}\right] \) as in (36), we can write

$$\begin{aligned} \widehat{\mathcal {U}}\left( x\right) =\left\{ \begin{array} [c]{lll} \left( I-k-\widehat{V}\left( x^* \right) \right) \frac{\psi _{\rho }\left( x\right) }{\psi _{\rho }\left( x^{*}\right) }\text {,} &{} \text {for} &{} x<x^{*} \text {,} \\ I-k-\widehat{V}\left( x\right) \text {,} &{} \text {for} &{} x\ge x^{*} \text {.} \end{array} \right. \end{aligned}$$
(38)

Notice that \(\widehat{\mathcal {U}}\) is already continuous at \(x^*\) by construction. In order to determine a candidate for the threshold \(x^*\), we impose that \(\widehat{\mathcal {U}}\) is \(C^1\) at \(x=x^*\); i.e., \(\widehat{\mathcal {U}}'\left( x^*-\right) =\widehat{\mathcal {U}}'\left( x^*+ \right) \), which in turn leads to

$$\begin{aligned} - \left( I-k-\widehat{V}\left( x^* \right) \right) \psi _{\rho }^{\prime }\left( x^{*}\right) + \left( I-k-\widehat{V}\right) ^{\prime }\left( x^{*}\right) \psi _{\rho }\left( x^{*}\right) = 0. \end{aligned}$$

Dividing the latter by \(S'\left( x \right) \) (cf. (29)) we find

$$\begin{aligned} \frac{\left( I-k-\widehat{V}\right) ^{\prime }\left( x^{*}\right) \psi _{\rho }\left( x^{*}\right) }{S^{\prime }\left( x^{*}\right) } - \frac{\left( I-k-\widehat{V}\left( x^* \right) \right) \psi _{\rho }^{\prime }\left( x^{*}\right) }{S^{\prime } \left( x^* \right) } =0\text {.} \end{aligned}$$
(39)

Letting \(A: \mathcal {I}\rightarrow \mathbb {R}\) be such that

$$\begin{aligned} A\left( x \right) := \frac{ \psi _{\rho }\left( x \right) \left( I-k-\widehat{V}\right) ^{\prime }\left( x \right) - \left( I-k-\widehat{V}\left( x \right) \right) \psi _{\rho }^{\prime }\left( x \right) }{S^{\prime } \left( x \right) } \end{aligned}$$
(40)

we have that (39) is equivalent to \(A\left( x^* \right) =0\).

Using the fact that \(S^{\prime }\) solves \(\left( \mathcal {L}_X S' \right) \left( x \right) =0\), and the fact that \(\psi _{\rho }\) solves (31), some algebra shows that

$$\begin{aligned} A^{\prime }(x)= \psi _{\rho } \left( x \right) m'\left( x\right) \left( \mathcal {L}_X - \rho \right) \left( I-k - \widehat{V}\right) \left( x \right) \text {.} \end{aligned}$$

Thanks to (13), we have that \(\lim _{x \rightarrow \underline{x}} A\left( x \right) =0\); hence, by the fundamental theorem of calculus, for any \(x \in \mathcal {I}\), we have

$$\begin{aligned} A\left( x \right) = \int _{\underline{x}}^x \psi _{\rho } \left( y \right) m'\left( y\right) \left( \mathcal {L}_X - \rho \right) \left( I-k - \widehat{V}\right) \left( y \right) dy \text {.} \end{aligned}$$
(41)

Since \(\left( \mathcal {L}_X - \rho \right) \widehat{V}\left( x \right) =- \left( \ell x + \lambda c \right) \), we can write from (41)

$$\begin{aligned} A\left( x \right) = \int _{\underline{x}}^x \psi _{\rho } \left( y \right) m'\left( y\right) \left( - \rho \left( I-k \right) + \ell y + \lambda c \right) dy \text {,} x \in \mathcal {I}\text {.} \end{aligned}$$
(42)

Because it must be \(A\left( x^* \right) =0\), then we obtain the equation for \(x^*\)

$$\begin{aligned} \int _{\underline{x}}^{x^*} \psi _{\rho } \left( y \right) m'\left( y\right) \left( -\rho \left( I-k \right) + \ell y + \lambda c \right) dy =0 \text {.} \end{aligned}$$
(43)

Step 2. We now show that there exists a unique \(x^*\) solving (43) such that \(x^* > \hat{x}\) with

$$\begin{aligned} \hat{x} := \frac{1}{\ell } \left( \rho \left( I-k\right) - \lambda c \right) \text {.} \end{aligned}$$

With reference to (42), observe that \(A\left( \hat{x} \right) <0\) because \( y \mapsto \left( - \rho \left( I-k\right) \right. \) \( \left. + \ell x + \lambda c \right) \) is increasing and null in \(\hat{x}\). Using again (42) one finds

$$\begin{aligned} A^{\prime } \left( x \right) = \psi _{\rho } \left( x \right) m^{\prime } \left( x \right) \left( - \rho \left( I-k\right) + \ell x + \lambda c \right) \end{aligned}$$

and we observe that \(A^{\prime } \left( x \right) >0\) \(\forall x > \hat{x}\) and \(A^{\prime } \left( x \right) < 0\) \(\forall x < \hat{x}\).

Moreover, given \(x>\hat{x}+ \delta \), for some \(\delta >0\), the integral mean-value theorem and (41) give for some \(\xi \in \left( \hat{x}+ \delta , x\right) \)

$$\begin{aligned}&A\left( x \right) = \int _{\underline{x}}^{x} \psi _{\rho } \left( y \right) m'\left( y\right) \left( - \rho \left( I-k\right) + \ell y + \lambda c \right) dy \\&= \int _{\underline{x}}^{\hat{x}+\delta } \psi _{\rho } \left( y \right) m'\left( y\right) \left( - \rho \left( I-k \right) + \ell y + \lambda c \right) dy \\&\quad + \int _{\hat{x}+\delta }^{x} \psi _{\rho } \left( y \right) m'\left( y\right) \left( - \rho \left( I-k \right) + \ell y +\lambda c \right) dy \\&=\int _{\underline{x}}^{\hat{x}+\delta }\psi _{\rho }\left( y\right) m^{\prime }\left( y\right) \left( - \rho \left( I-k\right) + \ell y -\lambda c\right) dy\\&\quad +\left( \frac{ -\rho \left( I-k\right) + \ell \xi + \lambda c}{\rho }\right) \int _{\hat{x}+\delta }^{x}\rho \psi _{\rho }\left( y\right) m^{\prime }\left( y\right) dy \\&=\int _{\underline{x}}^{\hat{x}+\delta }\psi _{\rho }\left( y\right) m^{\prime }\left( y\right) \left( - \rho \left( I-k\right) +\ell y+ \lambda c\right) dy\\&\quad + \left( \frac{ - \rho \left( I-k\right) + \ell \xi + \lambda c}{\rho } \right) \left( \frac{\psi _{\rho }^{\prime }\left( x\right) }{S^{\prime }\left( x\right) }-\frac{\psi _{\rho }^{\prime }\left( \hat{x}+\delta \right) }{S^{\prime }\left( \hat{x} + \delta \right) }\right) \text {.} \end{aligned}$$

Since \(- \rho \left( I-k\right) + \ell \left( \hat{x} + \delta \right) + \lambda c >0\) and \(\lim _{x \uparrow \overline{x}} \frac{\psi _{\rho }^{\prime }\left( x\right) }{S^{\prime } \left( x \right) } = + \infty ,\) we have that \(\lim _{x \uparrow \overline{x}} A\left( x \right) = +\infty .\) This fact, together with \(A\left( \hat{x}\right) <0\) and \(A^{\prime }\left( x \right) >0\) \(\forall x > \hat{x}\), leads to the existence of a unique \(x^* >\hat{x}\) such that \(A\left( x^* \right) =0\); that is, satisfying (42).

Step 3. We now prove that the \(C^1\)-function \(\widehat{\mathcal {U}}\) of (14) is such that

$$\begin{aligned} (a)\,\,\, \left( \mathcal {L}_{X}-\rho \right) \widehat{\mathcal {U}}\left( x\right) =0 \text {on} x<x^{*} \qquad \text {and} \qquad (b) \,\,\, \widehat{\mathcal {U}}\left( x\right) =I-k-\widehat{V}\left( x\right) \text {on} x\ge x^{*}, \end{aligned}$$

as well as

(c):

\(\widehat{\mathcal {U}}\left( x \right) \le I-k - \widehat{V}\left( x \right) \) \(\forall x < x^*\),

(d):

\(\left( \mathcal {L}_{X}-\rho \right) \widehat{\mathcal {U}}\left( x\right) \ge 0\) \(\forall x >x^*\).

Since (a) and (b) above are verified by construction, it thus remains to prove (c) and (d).

Proof of (c). Given (14) it is enough to show

$$\begin{aligned} \frac{I-k-\widehat{V}\left( x^*\right) }{\psi _{\rho }\left( x^{*}\right) }\le \frac{I-k-\widehat{V}\left( x\right) }{\psi _{\rho }\left( x\right) }\text {,} \forall x < x^*\text {.} \end{aligned}$$
(44)

First of all, we notice that \(x^*\) is such that

$$\begin{aligned} \left. \frac{d}{dy} \left( \frac{I-k-\widehat{V}\left( y\right) }{\psi _{\rho }\left( y\right) }\right) \right| _{y=x^{*} }= 0 \end{aligned}$$
(45)

because

$$\begin{aligned} \left. \frac{d}{dy} \left( \frac{I-k-\widehat{V} }{\psi _{\rho }\left( y\right) }\right) \right| _{y=x^{*} }&=\left. \frac{\left( I-k-\widehat{V}\right) ^{\prime }\left( y\right) \psi _{\rho }\left( y\right) -\left( I-k-\widehat{V}\right) \left( y\right) \psi _{\rho }^{\prime }\left( y\right) }{\left( \psi _{\rho }\left( y\right) \right) ^{2}}\right| _{y=x^{*}} \\&=\left. A\left( y\right) \cdot \frac{W\cdot S^{\prime }\left( y \right) }{\left( \psi _{\rho }\left( y \right) \right) ^{2}} \right| _{y=x^*}=0\text {,} \end{aligned}$$

due to (45). Moreover, by (41),

$$\begin{aligned} \left. \frac{d^2}{dy^2} \left( \frac{I-k-\widehat{V}}{\psi _{\rho }}\right) \left( y\right) \right| _{y=x^{*}}=\left. \left[ A \left( y\right) \cdot \left( \frac{W\cdot S^{\prime }\left( y\right) }{\left( \psi _{\rho }\left( y\right) \right) ^{2}}\right) ^{\prime }+A^{\prime }\left( y\right) \cdot \frac{W\cdot S^{\prime }\left( y\right) }{\left( \psi _{\rho }\left( y\right) \right) ^{2}}\right] \right| _{y=x^{*}} \text {.} \end{aligned}$$

Now, since \(A \left( x^* \right) =0\), using again (41) and the fact that \(x^* >\hat{x}\) we have

$$\begin{aligned}&\left. \frac{d^2}{dy^2} \left( \frac{I-k-\widehat{V}}{\psi _{\rho }}\right) \left( y\right) \right| _{y=x^{*}} = A^{\prime }\left( x^{*}\right) \cdot \frac{W\cdot S^{\prime }\left( x^{*}\right) }{\left( \psi _{\rho }\left( x^{*}\right) \right) ^{2}} \\ =&\frac{W\cdot S^{\prime }\left( x^{*}\right) }{\left( \psi _{\rho }\left( x^{*}\right) \right) ^{2}}\cdot \left. \frac{d}{dy}\left[ \int _{\underline{x}}^{y}\psi _{\rho }\left( z\right) m^{\prime }\left( z\right) \left( - \rho \left( I-k\right) +\ell z + \lambda c \right) dz\right] \right| _{y=x^{*}} \\&= \psi _{\rho }\left( x^{*}\right) m^{\prime }\left( x^{*}\right) \left( - \rho \left( I-k\right) + \ell x^{*} + \lambda c\right) >0 \text {.} \end{aligned}$$

This proves that the function \( \frac{I-k-\widehat{V}\left( x\right) }{\psi _{\rho }\left( x\right) }\) attains a minimum at \(x=x^*\) and thus gives (44).

Proof of (d). For any \(x> x^*\) we have

$$\begin{aligned} \left( \mathcal {L}_{X}-\rho \right) \widehat{\mathcal {U}}\left( x\right) =\left( \mathcal {L}_{X}-\rho \right) \left( I-k-\widehat{V}\right) \left( x\right) =-\rho \left( I-k\right) +\ell x+\lambda c>0\text {,} \end{aligned}$$

where in the second equality we use \(\left( \mathcal {L}_{X}-\rho \right) \widehat{V}\left( x\right) = - \left( \ell x+\lambda c\right) \) and for the last inequality we use the fact that \(x^* > \hat{x}\).

Step 4. The final verification of the optimality of \(\widehat{\mathcal {U}}\) and of \(\tau ^* =\inf \{ t \ge 0: X_t^x \ge x^*\}\) follows by a standard application of Itô’s formula (up to a localization argument) and the use of inequalities (a)–(d) above. We refer to Peskir and Shiryaev (2006) for proofs in related settings.

Step 5. The proof of the fact that \(\widehat{\mathcal {U}}=0\) and \(\widehat{\mathcal {U}}=I-k - \widehat{V}\) in the other two cases easily follows by noticing that \(V\left( x \right) = \inf _{\tau \ge 0} \mathbb {E}_x \left[ \int _0^{\tau } e^{-\rho t} \left( \ell X_t + \lambda c - \rho \left( I-k \right) \right) dt \right] + \left( I-k \right) \) and (8).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falbo, P., Ferrari, G., Rizzini, G. et al. Optimal switch from a fossil-fueled to an electric vehicle. Decisions Econ Finan 44, 1147–1178 (2021). https://doi.org/10.1007/s10203-021-00359-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10203-021-00359-2

Keywords

Mathematics Subject Classification

Navigation