Skip to main content
Log in

Enhanced recovery of gold from aqua regia leachate of electronic waste using dithiocarbamate-modified cellulose

  • SPECIAL FEATURE: ORIGINAL ARTICLE
  • 9th 3R International Scientific Conference (9th 3RINCs 2023)
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Electronic waste (e-waste) has emerged as a valuable secondary source of metals, including precious metals (PMs), surpassing those found in natural ores. The objective of this study is to explore the use of cellulose-based adsorbents, specifically dithiocarbamate-modified cellulose (DMC) and proline-incorporated DMC with epoxy-cross-linkage (DMC-Pro-Epo6), in the recovery of Au from e-waste, particularly under harsh aqua regia (AR) conditions. DMC adsorption behavior in AR is influenced by several factors, such as AR dilution, pre-adsorption phenomena, contact time, and AuIII concentration. DMCs displayed competitive adsorption across varied AR dilutions, benefiting from diluted AR due to hindered adsorption in undiluted AR. Contact time analysis demonstrated rapid AuIII adsorption, with equilibrium achieved in approximately 30 min. Four anion exchange-type commercial resins (Lewatit MonoPlus TP 214, Diaion WA30, Dowex 1X8, and AmberChrom 1X8) and one chelating CR (Q-10R) were tested for comparison, and their adsorption capacities were evaluated. Both the DMC and DMC-Pro-Epo6 have higher adsorption capacities for AuIII than commercial resins, which can be attributed to their sorption-active dithiocarbamate functional groups. The study also outlined a step-by-step Au extraction from printed circuit boards (PCBs), and the effective recovery of metallic Au from PCBs using DMCs was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Biswas FB, Rahman IMM, Nakakubo K, Yunoshita K, Endo M, Mashio AS, Taniguchi T, Nishimura T, Maeda K, Hasegawa H (2021) Comparative evaluation of dithiocarbamate-modified cellulose and commercial resins for recovery of precious metals from aqueous matrices. J Hazard Mater 418:126308. https://doi.org/10.1016/j.jhazmat.2021.126308

    Article  CAS  PubMed  Google Scholar 

  2. Parajuli D, Khunathai K, Adhikari CR, Inoue K, Ohto K, Kawakita H, Funaoka M, Hirota K (2009) Total recovery of gold, palladium, and platinum using lignophenol derivative. Miner Eng 22:1173–1178. https://doi.org/10.1016/j.mineng.2009.06.003

    Article  CAS  Google Scholar 

  3. Park YJ, Fray DJ (2009) Recovery of high purity precious metals from printed circuit boards. J Hazard Mater 164:1152–1158. https://doi.org/10.1016/j.jhazmat.2008.09.043

    Article  CAS  PubMed  Google Scholar 

  4. Wang J, Lu Y, Xu Z (2019) Identifying extraction technology of gold from solid waste in terms of environmental friendliness, ACS Sustainable Chem. Eng 7:7260–7267. https://doi.org/10.1021/acssuschemeng.9b00283

    Article  CAS  Google Scholar 

  5. Kubota F, Kono R, Yoshida W, Sharaf M, Kolev SD, Goto M (2019) Recovery of gold ions from discarded mobile phone leachate by solvent extraction and polymer inclusion membrane (PIM) based separation using an amic acid extractant. Sep Purif Technol 214:156–161. https://doi.org/10.1016/j.seppur.2018.04.031

    Article  CAS  Google Scholar 

  6. Forti V, Balde CP, Kuehr R, Bel G (2020) The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential. United Nations University, Bonn, Geneva and RotterdamAbdelhamid, Kerkeni, United Nations Institute for Training and Research

    Google Scholar 

  7. Shittu OS, Williams ID, Shaw PJ (2021) Global E-waste management: Can WEEE make a difference? A review of e-waste trends, legislation, contemporary issues and future challenges. Waste Manage (Oxford) 120:549–563. https://doi.org/10.1016/j.wasman.2020.10.016

    Article  Google Scholar 

  8. Xavier LH, Ottoni M, Abreu LPP (2023) A comprehensive review of urban mining and the value recovery from e-waste materials. Resour Conserv Recycl 190:106840. https://doi.org/10.1016/j.resconrec.2022.106840

    Article  Google Scholar 

  9. Bae M, Lee J-C, Lee H, Kim S (2020) Recovery of nitric acid and gold from gold-bearing aqua regia by tributyl-phosphate. Sep Purif Technol 235:116154. https://doi.org/10.1016/j.seppur.2019.116154

    Article  CAS  Google Scholar 

  10. Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Böni H (2005) Global perspectives on e-waste. Environ Impact Assess Rev 25:436–458. https://doi.org/10.1016/j.eiar.2005.04.001

    Article  Google Scholar 

  11. Anwer S, Panghal A, Majid I, Mallick S (2022) Urban mining: recovery of metals from printed circuit boards. Int J Environ Sci Technol 19:9731–9740. https://doi.org/10.1007/s13762-021-03662-y

    Article  CAS  Google Scholar 

  12. Syed S (2012) Recovery of gold from secondary sources—A review. Hydrometallurgy 115–116:30–51. https://doi.org/10.1016/j.hydromet.2011.12.012

    Article  CAS  Google Scholar 

  13. Morcali MH, Zeytuncu B, Akman S, Yucel O (2014) Sorption of gold from electronic waste solutions by a commercial sorbent. Chem Eng Commun 201:1041–1053. https://doi.org/10.1080/00986445.2013.798731

    Article  CAS  Google Scholar 

  14. Syed S (2006) A green technology for recovery of gold from non-metallic secondary sources. Hydrometallurgy 82:48–53. https://doi.org/10.1016/j.hydromet.2006.01.004

    Article  CAS  Google Scholar 

  15. Birich A, Stopic S, Friedrich B (2019) Kinetic investigation and dissolution behavior of cyanide alternative gold leaching reagents. Sci Rep 9:7191. https://doi.org/10.1038/s41598-019-43383-4

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Yannopoulos JC (1991) Recovery of Secondary Gold. In: The Extractive Metallurgy of Gold. Springer US, Boston, pp. 137–139.

  17. Ding Y, Zhang S, Liu B, Zheng H, Chang C-C, Ekberg C (2019) Recovery of precious metals from electronic waste and spent catalysts: A review, Resour. Conserv Recycl 141:284–298. https://doi.org/10.1016/j.resconrec.2018.10.041

    Article  Google Scholar 

  18. Tuncuk A, Stazi V, Akcil A, Yazici EY, Deveci H (2012) Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling. Miner Eng 25:28–37. https://doi.org/10.1016/j.mineng.2011.09.019

    Article  CAS  Google Scholar 

  19. Zhang Y, Liu S, Xie H, Zeng X, Li J (2012) Current status on leaching precious metals from waste printed circuit boards, Procedia Environ. Sci 16:560–568. https://doi.org/10.1016/j.proenv.2012.10.077

    Article  CAS  Google Scholar 

  20. Cyganowski P, Garbera K, Leśniewicz A, Wolska J, Pohl P, Jermakowicz-Bartkowiak D (2017) The recovery of gold from the aqua regia leachate of electronic parts using a core–shell type anion exchange resin. J Saudi Chem Soc 21:741–750. https://doi.org/10.1016/j.jscs.2017.03.007

    Article  CAS  Google Scholar 

  21. Elomaa H, Seisko S, Junnila T, Sirviö T, Wilson BP, Aromaa J, Lundström M (2017) The effect of the redox potential of aqua regia and temperature on the Au, Cu, and Fe dissolution from WPCBs. Recycling 2:14. https://doi.org/10.3390/recycling2030014

    Article  Google Scholar 

  22. Williams-Jones AE, Bowell RJ, Migdisov AA (2009) Gold in Solution. Elements 5:281–287. https://doi.org/10.2113/gselements.5.5.281

    Article  CAS  ADS  Google Scholar 

  23. Jaiswal SK, Mandal D, Visweswara Rao RVRL (2015) Recovery and reuse of nitric acid from effluents containing free nitric acid in absence and presence of metal nitrates. Chem Eng J 266:271–278. https://doi.org/10.1016/j.cej.2014.12.060

    Article  CAS  Google Scholar 

  24. Soleimani M, Kaghazchi T (2008) Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones – An agricultural waste. Bioresour Technol 99:5374–5383. https://doi.org/10.1016/j.biortech.2007.11.021

    Article  CAS  PubMed  Google Scholar 

  25. Aktas S, Morcali MH (2011) Gold uptake from dilute chloride solutions by a Lewatit TP 214 and activated rice husk. Int J Miner Process 101:63–70. https://doi.org/10.1016/j.minpro.2011.07.007

    Article  CAS  Google Scholar 

  26. Navarro R, Saucedo I, Lira MA, Guibal E (2010) Gold(III) recovery from HCl solutions using Amberlite XAD-7 impregnated with an ionic liquid (Cyphos IL-101). Sep Sci Technol 45:1950–1962. https://doi.org/10.1080/01496395.2010.493116

    Article  CAS  Google Scholar 

  27. Nakajima A, Ohe K, Baba Y, Kijima T (2003) Mechanism of Gold Adsorption by Persimmon Tannin Gel. Anal Sci 19:1075–1077. https://doi.org/10.2116/analsci.19.1075

    Article  CAS  PubMed  Google Scholar 

  28. Khoo KM, Ting YP (2001) Biosorption of gold by immobilized fungal biomass. Biochem Eng J 8:51–59. https://doi.org/10.1016/S1369-703X(00)00134-0

    Article  CAS  PubMed  Google Scholar 

  29. Dodson JR, Parker HL, Muñoz García A, Hicken A, Asemave K, Farmer TJ, He H, Clark JH, Hunt AJ (2015) Bio-derived materials as a green route for precious & critical metal recovery and re-use. Green Chem 17:1951–1965. https://doi.org/10.1039/C4GC02483D

    Article  CAS  Google Scholar 

  30. Chang Z, Zeng L, Sun C, Zhao P, Wang J, Zhang L, Zhu Y, Qi X (2021) Adsorptive recovery of precious metals from aqueous solution using nanomaterials – A critical review. Coord Chem Rev 445:214072. https://doi.org/10.1016/j.ccr.2021.214072

    Article  CAS  Google Scholar 

  31. Rocky MMH, Rahman IMM, Biswas FB, Rahman S, Endo M, Wong KH, Mashio AS, Hasegawa H (2023) Cellulose-based materials for scavenging toxic and precious metals from water and wastewater: A review. Chem Eng J 472:144677. https://doi.org/10.1016/j.cej.2023.144677

    Article  CAS  Google Scholar 

  32. Biswas FB, Rahman IMM, Nakakubo K, Endo M, Nagai K, Mashio AS, Taniguchi T, Nishimura T, Maeda K, Hasegawa H (2021) Highly selective and straightforward recovery of gold and platinum from acidic waste effluents using cellulose-based bio-adsorbent. J Hazard Mater 410:124569. https://doi.org/10.1016/j.jhazmat.2020.124569

    Article  CAS  Google Scholar 

  33. Nakakubo K, Endo M, Sakai Y, Biswas FB, Wong KH, Mashio AS, Taniguchi T, Nishimura T, Maeda K, Hasegawa H (2022) Cross-linked dithiocarbamate-modified cellulose with enhanced thermal stability and dispersibility as a sorbent for arsenite removal. Chemosphere 307:135671. https://doi.org/10.1016/j.chemosphere.2022.135671

    Article  CAS  PubMed  Google Scholar 

  34. Nakakubo K, Hasegawa H, Ito M, Yamazaki K, Miyaguchi M, Biswas FB, Ikai T, Maeda K (2019) Dithiocarbamate-modified cellulose resins: A novel adsorbent for selective removal of arsenite from aqueous media. J Hazard Mater 380:120816. https://doi.org/10.1016/j.jhazmat.2019.120816

    Article  CAS  PubMed  Google Scholar 

  35. Gowing CJB, Potts PJ (1991) Evaluation of a rapid technique for the determination of precious metals in geological samples based on a selective aqua regia leach. Analyst 116:773–779. https://doi.org/10.1039/AN9911600773

    Article  CAS  ADS  Google Scholar 

  36. Padhye LP, Kim J-H, Huang C-H (2013) Oxidation of dithiocarbamates to yield N-nitrosamines by water disinfection oxidants. Water Res 47:725–736. https://doi.org/10.1016/j.watres.2012.10.043

    Article  CAS  PubMed  Google Scholar 

  37. Chmielewski AG, Urbański TS, Migdał W (1997) Separation technologies for metals recovery from industrial wastes. Hydrometallurgy 45:333–344. https://doi.org/10.1016/S0304-386X(96)00090-4

    Article  CAS  Google Scholar 

  38. Kulandaisamy S, Rethinaraj JP, Adaikkalam P, Srinivasan GN, Raghavan M (2003) The aqueous recovery of gold from electronic scrap. JOM 55:35–38. https://doi.org/10.1007/s11837-003-0102-2

    Article  CAS  Google Scholar 

  39. Halli P, Hamuyuni J, Revitzer H, Lundström M (2017) Selection of leaching media for metal dissolution from electric arc furnace dust. J Cleaner Prod 164:265–276. https://doi.org/10.1016/j.jclepro.2017.06.212

    Article  CAS  Google Scholar 

  40. Veit HM, Bernardes AM, Ferreira JZ, JaS T, Malfatti CDF (2006) Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy. J Hazard Mater 137:1704–1709. https://doi.org/10.1016/j.jhazmat.2006.05.010

    Article  CAS  PubMed  Google Scholar 

  41. Sheng PP, Etsell TH (2007) Recovery of gold from computer circuit board scrap using aqua regia, Waste Manage. Res 25:380–383. https://doi.org/10.1177/0734242X07076946

    Article  CAS  Google Scholar 

  42. Bonggotgetsakul YYN, Cattrall RW, Kolev SD (2016) Recovery of gold from aqua regia digested electronic scrap using a poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) based polymer inclusion membrane (PIM) containing Cyphos® IL 104. J Membr Sci 514:274–281. https://doi.org/10.1016/j.memsci.2016.05.002

    Article  CAS  Google Scholar 

  43. Kızılaslan E, Aktaş S, Şeşen MK (2009) Towards environmentally safe recovery of platinum from scrap automotive catalytic converters. Turk J Eng Environ Sci 33:83–90

    Google Scholar 

  44. Chaudhari SV, Deshmukh GM (2015) Fluidization effect on removal and recovery of palladium (II) from wastewater by chelated ion exchange resin. Chem Eng Commun. https://doi.org/10.1080/00986445.2014.880423

    Article  Google Scholar 

  45. Hubicki Z, Wołowicz A (2009) A comparative study of chelating and cationic ion exchange resins for the removal of palladium(II) complexes from acidic chloride media. J Hazard Mater 164:1414–1419. https://doi.org/10.1016/j.jhazmat.2008.09.053

    Article  CAS  PubMed  Google Scholar 

  46. Lee J-C, Kurniawan H-J, Chung KW, Kim S (2020) Separation of platinum, palladium and rhodium from aqueous solutions using ion exchange resin: A review. Sep Purif Technol 246:116896. https://doi.org/10.1016/j.seppur.2020.116896

    Article  CAS  Google Scholar 

  47. Lu Y, Xu Z (2016) Precious metals recovery from waste printed circuit boards: A review for current status and perspective, Resour. Conserv Recycl 113:28–39. https://doi.org/10.1016/j.resconrec.2016.05.007

    Article  Google Scholar 

  48. Hao J, Wang Y, Wu Y, Guo F (2020) Metal recovery from waste printed circuit boards: A review for current status and perspectives. Resour Conserv Recycl 157:104787. https://doi.org/10.1016/j.resconrec.2020.104787

    Article  Google Scholar 

  49. Jadhav U, Hocheng H (2015) Hydrometallurgical recovery of metals from large printed circuit board pieces. Sci Rep 5:14574. https://doi.org/10.1038/srep14574

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Lekka M, Masavetas I, Benedetti AV, Moutsatsou A, Fedrizzi L (2015) Gold recovery from waste electrical and electronic equipment by electrodeposition: A feasibility study. Hydrometallurgy 157:97–106. https://doi.org/10.1016/j.hydromet.2015.07.017

    Article  CAS  Google Scholar 

  51. Behnamfard A, Salarirad MM, Veglio F (2013) Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Manage (Oxford) 33:2354–2363. https://doi.org/10.1016/j.wasman.2013.07.017

    Article  CAS  Google Scholar 

  52. Mecucci A, Scott K (2002) Leaching and electrochemical recovery of copper, lead and tin from scrap printed circuit boards. J Chem Technol Biotechnol 77:449–457. https://doi.org/10.1002/jctb.575

    Article  CAS  Google Scholar 

  53. Djokić J, Jovančićević B, Brčeski I, Ranitović M, Gajić N, Kamberović Ž (2020) Leaching of metastannic acid from e-waste by-products. J Mater Cycles Waste Manage 22:1899–1912. https://doi.org/10.1007/s10163-020-01076-5

    Article  CAS  Google Scholar 

  54. Havlik T, Orac D, Petranikova M, Miskufova A, Kukurugya F, Takacova Z (2010) Leaching of copper and tin from used printed circuit boards after thermal treatment. J Hazard Mater 183:866–873. https://doi.org/10.1016/j.jhazmat.2010.07.107

    Article  CAS  PubMed  Google Scholar 

  55. Jha MK, Choubey PK, Jha AK, Kumari A, Lee J-C, Kumar V, Jeong J (2012) Leaching studies for tin recovery from waste e-scrap. Waste Manage (Oxford) 32:1919–1925. https://doi.org/10.1016/j.wasman.2012.05.006

    Article  CAS  Google Scholar 

  56. Yang J, Kubota F, Baba Y, Kamiya N, Goto M (2014) Application of cellulose acetate to the selective adsorption and recovery of Au(III). Carbohydr Polym 111:768–774. https://doi.org/10.1016/j.carbpol.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  57. Mahyapour H, Mohammadnejad S (2022) Optimization of the operating parameters in gold electro-refining. Miner Eng 186:107738. https://doi.org/10.1016/j.mineng.2022.107738

    Article  CAS  Google Scholar 

  58. Tansel B (2017) From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges. Environ Int 98:35–45. https://doi.org/10.1016/j.envint.2016.10.002

    Article  PubMed  Google Scholar 

  59. Tipre DR, Khatri BR, Thacker SC, Dave SR (2021) The brighter side of e-waste—a rich secondary source of metal. Environ Sci Pollut Res 28:10503–10518. https://doi.org/10.1007/s11356-020-12022-1

    Article  CAS  Google Scholar 

  60. Arrascue ML, Garcia HM, Horna O, Guibal E (2003) Gold sorption on chitosan derivatives. Hydrometallurgy 71:191–200. https://doi.org/10.1016/S0304-386X(03)00156-7

    Article  CAS  Google Scholar 

  61. Georgouvelas D, Abdelhamid HN, Li J, Edlund U, Mathew AP (2021) All-cellulose functional membranes for water treatment: Adsorption of metal ions and catalytic decolorization of dyes. Carbohydr Polym 264:118044. https://doi.org/10.1016/j.carbpol.2021.118044

    Article  CAS  PubMed  Google Scholar 

  62. Romero-González ME, Williams CJ, Gardiner PHE, Gurman SJ, Habesh S (2003) Spectroscopic Studies of the Biosorption of Gold(III) by Dealginated Seaweed Waste. Environ Sci Technol 37:4163–4169. https://doi.org/10.1021/es020176w

    Article  CAS  PubMed  ADS  Google Scholar 

  63. Ishikawa S-I, Suyama K, Arihara K, Itoh M (2002) Uptake and recovery of gold ions from electroplating wastes using eggshell membrane. Bioresour Technol 81:201–206. https://doi.org/10.1016/S0960-8524(01)00134-1

    Article  CAS  PubMed  Google Scholar 

  64. Ji Y, Gao H, Sun J, Cai F (2011) Experimental probation on the binding kinetics and thermodynamics of Au(III) onto Bacillus subtilis. Chem Eng J 172:122–128. https://doi.org/10.1016/j.cej.2011.05.077

    Article  CAS  Google Scholar 

  65. Liu L, Li C, Bao C, Jia Q, Xiao P, Liu X, Zhang Q (2012) Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93:350–357. https://doi.org/10.1016/j.talanta.2012.02.051

    Article  CAS  PubMed  Google Scholar 

  66. Pangeni B, Paudyal H, Inoue K, Kawakita H, Ohto K, Alam S (2012) Selective recovery of gold(III) using cotton cellulose treated with concentrated sulfuric acid. Cellulose 19:381–391. https://doi.org/10.1007/s10570-011-9628-6

    Article  CAS  Google Scholar 

  67. Ramesh A, Hasegawa H, Sugimoto W, Maki T, Ueda K (2008) Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresour Technol 99:3801–3809. https://doi.org/10.1016/j.biortech.2007.07.008

    Article  CAS  PubMed  Google Scholar 

  68. Torres E, Mata YN, Blázquez ML, Muñoz JA, González F, Ballester A (2005) Gold and Silver Uptake and Nanoprecipitation on Calcium Alginate Beads. Langmuir 21:7951–7958. https://doi.org/10.1021/la046852k

    Article  CAS  PubMed  Google Scholar 

  69. Varia J, Zegeye A, Roy S, Yahaya S, Bull S (2014) Shewanella putrefaciens for the remediation of Au3+, Co2+ and Fe3+ metal ions from aqueous systems. Biochem Eng J 85:101–109. https://doi.org/10.1016/j.bej.2014.02.002

    Article  CAS  Google Scholar 

  70. Nguyen NV, Jeong J, Jha MK, Lee J-C, Osseo-Asare K (2010) Comparative studies on the adsorption of Au(III) from waste rinse water of semiconductor industry using various resins. Hydrometallurgy 105:161–167. https://doi.org/10.1016/j.hydromet.2010.09.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Japan Society for the Promotion of Science (JSPS) provided financial support for this study through the Grants-in-Aid for Scientific Research (Grant Nos. 21H03632 and 21K12287).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Mehedi Hasan Rocky, Ismail M. M. Rahman or Hiroshi Hasegawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material (Appendix A).

Supplementary file1 (DOC 4156 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocky, M.M.H., Rahman, I.M.M., Sakai, Y. et al. Enhanced recovery of gold from aqua regia leachate of electronic waste using dithiocarbamate-modified cellulose. J Mater Cycles Waste Manag 26, 816–829 (2024). https://doi.org/10.1007/s10163-023-01824-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01824-3

Keywords

Navigation