Skip to main content
Log in

A review on recent trends in solidification and stabilization techniques for heavy metal immobilization

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

For environmental protection, safe disposal of toxic pollutants such as heavy metal is very important since they are regarded as hazardous waste. Several techniques such as cementitious, biological and thermal treatments are effectively used for immobilization of heavy metals into solid matrix. Using these techniques heavy metal could be solidified and stabilized in the dense and durable solid matrices ready for disposal into hazardous landfill sites. The heavy metal immobilization into solid matrix reduces its permeability significantly thereby restricting its release into environment. The detailed mechanism of the methods used for immobilization of heavy metals is discussed in this paper. Furthermore, the advantages and disadvantages of various techniques involved in immobilization of heavy metals is also reviewed in detail.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the study is available within the article.

References

  1. Wei Q, Zhang H, Tian Y, Wei Y, Song Q, Zou X, Shao J, Su C (2015) Effect of Er3+–Yb3+ additions on the crystallization and luminescence properties of ZnO–WO3–B2O3–SiO2 glass ceramics. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2015.08.164

    Article  Google Scholar 

  2. Huang Q, Liu T, Zhang J, He X, Liu J, Luo Z, Lu A (2020) Properties and pore-forming mechanism of silica sand tailing-steel slag-coal gangue based permeable ceramics. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.118870

    Article  Google Scholar 

  3. Boutammine H, Salem Z, Khodja M (2020) Petroleum drill cuttings treatment using stabilization/solidification and biological process combination. Soil Sediment Contam. https://doi.org/10.1080/15320383.2020.1722982

    Article  Google Scholar 

  4. Tzanakos K, Mimilidou A, Anastasiadou SA, Gidarakos E (2014) Solidification/stabilization of ash from medical waste incineration into geopolymers. Waste Manage. https://doi.org/10.1016/j.wasman.2014.03.02

    Article  Google Scholar 

  5. Wang FH, Zhang F, Chen YJ, Gao J, Zhao B (2015) A comparative study on the heavy metal solidification/stabilization performance of four chemical solidifying agents in municipal solid waste incineration fly ash. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2015.07.037

    Article  Google Scholar 

  6. Jayaranjan ML, van Hullebusch ED, Annachhatre AP (2014) Reuse options for coal fired power plant bottom ash and fly ash. Rev Environ Sci Biotechnol. https://doi.org/10.1007/s11157-014-9336-4

    Article  Google Scholar 

  7. Wilk CM (2004) Solidification/stabilization treatment and examples of use at port facilities. Ports. https://doi.org/10.1061/40727(2004)92

    Article  Google Scholar 

  8. Shi C (2004) Stabilization and Solidification of Hazardous, Radioactive, and Mixed. CRC Press, Boca Raton

    Google Scholar 

  9. Conner JR, Hoeffner SL (1998) A critical review of stabilization/solidification technology. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389891254250

    Article  Google Scholar 

  10. Wiles CC (1987) A review of solidification/stabilization technology. J Hazard Mater. https://doi.org/10.1016/0304-3894(87)87002-4

    Article  Google Scholar 

  11. Krivenko P, Petropavlovskyi O, Kovalchuk O, Lapovska S, Pasko A (2018) Design of the composition of alkali activated Portland cement using mineral additives of technogenic origin. Eastern European J. Enterp. Technol. https://doi.org/10.15587/1729-4061.2018.140324.

  12. Wagh AS (2016) Chemically Bonded Phosphate Ceramics: Twenty-first century materials with diverse applications. Elsevier, Amsterdam

    Google Scholar 

  13. Xia M, Muhammad F, Zeng L, Li S, Huang X, Jiao B, Shiau C, Li, (2019) Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.10.265

    Article  Google Scholar 

  14. Li Z, Chen R, Zhang L (2013) Utilization of chitosan biopolymer to enhance fly ash-based geopolymer. J Mater Sci. https://doi.org/10.1007/s10853-013-7610-4

    Article  Google Scholar 

  15. Devi P, Kothari P, Dalai AK (2020) Stabilization and solidification of arsenic and iron contaminated canola meal biochar using chemically modified phosphate binders. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121559

    Article  Google Scholar 

  16. Cheng TW, Ueng TH, Chen YS, Chiu J (2002) Production of glass-ceramic from incinerator fly ash. Ceram Int. https://doi.org/10.1016/s0272-8842(02)00043-3

    Article  Google Scholar 

  17. Al Qabany A, Soga K, Santamarina C (2012) Factors affecting efficiency of microbially induced calcite precipitation. J GEOTECH GEOENVIRON. https://doi.org/10.1061/(asce)gt.1943-5606.0000666

    Article  Google Scholar 

  18. Wang L, Yu K, Li JS, Tsan DCW, Poon CS, Yoo JC, Baek K, Ding S, Hou D, Dai JG (2018) Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. Chem Eng J. https://doi.org/10.1016/j.cej.2018.06.118

    Article  Google Scholar 

  19. Shi C, Spence R (2004) Designing of cement-based formula for solidification/stabilization of hazardous, radioactive, and mixed wastes. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643380490443281

    Article  Google Scholar 

  20. Gougar MLD, Scheetz BE, Roy DM (1996) Ettringite and C-S-H Portland cement phases for waste ion immobilization: a review. Waste Manage. https://doi.org/10.1016/s0956-053x(96)00072-4

    Article  Google Scholar 

  21. Duxson P, Provis JL, Lukey GC, van Deventer JSJ (2007) The role of Inorganic polymer technology in the development of ‘green concrete.’ Cem Concr Res. https://doi.org/10.1016/j.cemconres.2007.08.018

    Article  Google Scholar 

  22. Pacheco-Torgal F, Labrincha J, Leonelli C, Palomo A, Chindaprasit P (2014) Handbook of alkali-activated cements, mortars and concretes. Elsevier, Amsterdam

    Google Scholar 

  23. Jiang H, Qi Z, Yilmaz E, Han J, Qiu J, Dong C (2019) Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.05.162

    Article  Google Scholar 

  24. Le Rouzic M, Chaussadent T, Platret G, Stefa L (2017) Mechanisms of K-struvite formation in magnesium phosphate cements. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2016.11.008

    Article  Google Scholar 

  25. Imbabi MS, Carrigan C, McKenna S (2012) Trends and developments in green cement and concrete technology. Int J Sustain Built Environ. https://doi.org/10.1016/j.ijsbe.2013.05.001

    Article  Google Scholar 

  26. Haque MA, Chen B (2019) Research progresses on magnesium phosphate cement: a review. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.03.304

    Article  Google Scholar 

  27. Cao X, Ma R, Zhang Q, Wang W, Liao Q, Sun S, Zhang P, Liu X (2020) The factors influencing sludge incineration residue (SIR)-based magnesium potassium phosphate cement and the solidification/stabilization characteristics and mechanisms of heavy metals. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127789

    Article  Google Scholar 

  28. Xu H, Lian J, Gao M, Fu D, Yan Y (2019) Self-healing concrete using rubber particles to immobilize bacterial spores. Materials. https://doi.org/10.3390/ma12142313

    Article  Google Scholar 

  29. Kang CH, Han SH, Shin YJ, Oh SJ, So JS (2014) Bioremediation of Cd by microbially induced calcite precipitation. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-014-0737-1

    Article  Google Scholar 

  30. Martuscelli C, Soares C, Camões A, Lima N (2020) Potential of fungi for concrete repair. Procedia Manuf. https://doi.org/10.1016/j.promfg.2020.03.027

    Article  Google Scholar 

  31. Tang Y, Shih K (2013) Stabilization mechanisms and reaction sequences for sintering simulated copper-laden sludge with alumina. ACS Sustain Chem Eng. https://doi.org/10.1021/sc400087g

    Article  Google Scholar 

  32. Tang Y, Lee PH, Shih K (2013) Copper sludge from printed circuit board production/recycling for ceramic materials: a quantitative analysis of copper transformation and immobilization. Environ Sci Technol. https://doi.org/10.1021/es400404x

    Article  Google Scholar 

  33. Liu B, Yang QW, Zhang SG (2019) Integrated utilization of municipal solid waste incineration fly ash and bottom ash for preparation of foam glass–ceramics. Rare Met. https://doi.org/10.1007/s12598-019-01314-2

    Article  Google Scholar 

  34. Stoch P, Ciecińska M, Stoch A, Kuterasińsk Ł, Krakowiak I (2018) Immobilization of hospital waste incineration ashes in glass-ceramic composites. Ceram Int. https://doi.org/10.1016/j.ceramint.2017.09.238

    Article  Google Scholar 

  35. Lee J, Lee T (2019) Influences of chemical composition and fineness on the development of concrete strength by curing conditions. Materials. https://doi.org/10.3390/ma12244061

    Article  Google Scholar 

  36. Lasheras-Zubiate M, Navarro-Blasco I, Fernández JM, Álvarez JI (2012) Encapsulation, solid-phases identification and leaching of toxic metals in cement systems modified by natural biodegradable polymers. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2012.06.028

    Article  Google Scholar 

  37. Choi WH, Lee SR, Park JY (2009) Cement based solidification/stabilization of arsenic-contaminated mine tailings. Waste Manage. https://doi.org/10.1016/j.wasman.2008.11.008

    Article  Google Scholar 

  38. Oner A, Akyuz S, Yildiz R (2005) An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cem Concr Res 35(6):1165–1171. https://doi.org/10.1016/j.cemconres.2004.09.031

    Article  Google Scholar 

  39. Peysson S, Péra J, Chabannet M (2005) Immobilization of heavy metals by calcium sulfoaluminate cement. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2005.03.015

    Article  Google Scholar 

  40. Li X (2001) Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. J Hazard Mater. https://doi.org/10.1016/s0304-3894(00)00360-5

    Article  Google Scholar 

  41. Chen QY, Hills CD, Tyrer M, Slipper I, Shen HG, Broug A (2007) Characterisation of products of tricalcium silicate hydration in the presence of heavy metals. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2007.01.136

    Article  Google Scholar 

  42. Talero R (1996) Comparative XRD Analysis Ettringite originating from Pozzolan and from Portland cement. Cem Concr Res. https://doi.org/10.1016/0008-8846(96)00092-0

    Article  Google Scholar 

  43. Dunuweera SP, Rajapakse RM (2018) Cement types, composition, uses and advantages of nano-cement, environmental impact on cement production, and possible solutions. Adv Mater Sci Eng. https://doi.org/10.1155/2018/4158682

    Article  Google Scholar 

  44. Soroka I (1979) Portland cement paste and concrete. Macmillan. https://doi.org/10.1007/978-1-349-03994-4_3

    Article  Google Scholar 

  45. Vespa M, Dähn R, Wieland E (2014) Competition behaviour of metal uptake in cementitious systems: An XRD and EXAFS investigation of Nd- and Zn-loaded 11Å tobermorite. Phys Chem Earth. https://doi.org/10.1016/j.pce.2014.01.001

    Article  Google Scholar 

  46. Van der Sloot HA (2002) Characterization of the leaching behaviour of concrete mortars and of cement–stabilized wastes with different waste loading for long term environmental assessment. Waste Manage 22(2):181–186. https://doi.org/10.1016/S0956-053X(01)00067-8

    Article  Google Scholar 

  47. Dermatas D, Meng X (2003) Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Eng Geol. https://doi.org/10.1016/s0013-7952(03)00105-4

    Article  Google Scholar 

  48. Mellado A, Borrachero MV, Soriano L, Payá J, Monzó J (2012) Immobilization of Zn(II) in Portland cement pastes. J Therm Anal Calorim. https://doi.org/10.1007/s10973-012-2705-8

    Article  Google Scholar 

  49. McCarter WJ (1996) Assessing the protective qualities of treated and untreated concrete surfaces under cyclic wetting and drying. Build Environ. https://doi.org/10.1016/0360-1323(96)00020-0

    Article  Google Scholar 

  50. Punurai W, Jarzynski J, Qu J, Kim JY, Jacobs LJ, Kurtis KE (2007) Characterization of multi-scale porosity in cement paste by advanced ultrasonic techniques. Cem Concr Res 37(1):38–46. https://doi.org/10.1016/j.cemconres.2006.09.016

    Article  Google Scholar 

  51. Bulut U, Ozverdi A, Erdem M (2009) Leaching behavior of pollutants in Ferrochrome arc furnace dust and its stabilization/solidification using ferrous sulphate and Portland Cement. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2008.05.114

    Article  Google Scholar 

  52. Wang Y, Liu X, Zhang W, Li Z, Zhang Y, Li Y, Ren Y (2020) Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.118852

    Article  Google Scholar 

  53. Zhang P, Zheng Y, Wang K, Zhang (2018) A review on properties of fresh and hardened geopolymer mortar. Compos. B. Eng. doi: https://doi.org/10.1016/j.compositesb.2018.06.031.

  54. El-eswed BI (2020) Chemical Evaluation of immobilization of wastes containing Pb, Cd, Cu and Zn in alkali-activated materials a critical review. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104194

    Article  Google Scholar 

  55. He J, Jie Y, Zhang, J, Y Zhang, (2013) Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2012.11.010.

  56. Vu MC, Satomi T, Takahashi H, Le AT (2018) Study on weak soil improvement by using geopolymer and paper fragments. Int J Soc Mater Eng Resour. https://doi.org/10.5188/ijsmer.23.203

    Article  Google Scholar 

  57. Malviya R, Chaudhary R (2004) Study of the treatment effectiveness of a solidification/stabilization process for waste bearing heavy metals. J Mater Cycles Waste Manage 6(2):147–152. https://doi.org/10.1007/s10163-004-0113-2

    Article  Google Scholar 

  58. Van Jaarsveld JG, Van Deventer JS, Lorenzen L (1998) Factors affecting the immobilization of metals in geopolymerized fly ash. METALL MATER TRANS B. https://doi.org/10.1007/s11663-998-0032-z

    Article  Google Scholar 

  59. Pantazopoulou E, Ntinoudi E, Zouboulis AI, Mitrakas M, Yiannoulakis H, Zampetakis T (2020) Heavy metal stabilization of industrial solid wastes using low-grade magnesia, Portland and magnesia cements. J Mater Cycles Waste Manag 22(4):975–985. https://doi.org/10.1007/s10163-020-00985-9

    Article  Google Scholar 

  60. Ogundiran MB, Nugteren HW, Witkamp GJ (2013) Immobilisation of lead smelting slag within spent aluminate—fly ash based geopolymers. J Hazard Mater 248:29–36. https://doi.org/10.1016/j.jhazmat.2012.12.040

    Article  Google Scholar 

  61. Singh R, Budarayavalasa S (2021) Solidification and stabilization of hazardous wastes using geopolymers as sustainable binders. J Mater Cycles Waste Manag 23(5):1699–1725. https://doi.org/10.1007/s10163-021-01245-0

    Article  Google Scholar 

  62. De Vargas AS, Dal Molin DC, Vilela AC, Da Silva FJ, Pavao B, Veit H (2011) The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2011.03.006

    Article  Google Scholar 

  63. Yamchelou MT, Law D, Brkljača R, Li J, Patnaikuni I (2021) Pre-treatment impact on the disposition of water in clay-based geopolymer. Open Ceramics. https://doi.org/10.1016/j.oceram.2020.100053

    Article  Google Scholar 

  64. Zhou X, Zhang T, Wan S, Hu B, Tong J, Sun H, Hou H (2020) Immobilizatiaon of heavy metals in municipal solid waste incineration fly ash with red mud-coal gangue. J Mater Cycles Waste Manag 22(6):1953–1964. https://doi.org/10.1007/s10163-020-01082-7

    Article  Google Scholar 

  65. Li N, Shi C, Zhang Z, Wang H, Li L (2019) A review on mixture design methods for geopolymer concrete. Compos B Eng. https://doi.org/10.1016/j.compositesb.2019.107490

    Article  Google Scholar 

  66. Mian MM, Zeng X, Nasry A, Al-Hamadani SM (2017) Municipal solid waste management in China: a comparative analysis. J Mater Cycles Waste Manag 19(3):1127–1135. https://doi.org/10.1007/s10163-016-0509-9

    Article  Google Scholar 

  67. Billen P, Verbinnen B, De Smet M, Dockx G, Ronsse S, Villani K, Vandecasteele C (2015) Comparison of solidification/stabilization of fly ash and air pollution control residues from municipal solid waste incinerators with and without cement addition. J Mater Cycles Waste Manag 17(2):229–236. https://doi.org/10.1007/s10163-014-0292-4

    Article  Google Scholar 

  68. Ballesteros F, Manila AA, Choi AES, Lu MC (2019) Electroplating sludge handling by solidification/stabilization process: a comprehensive assessment using kaolinite clay, waste latex paint and calcium chloride cement additives. J Mater Cycles Waste Manag 21(6):1505–1517. https://doi.org/10.1007/s10163-019-00903-8

    Article  Google Scholar 

  69. Sugama T, Kukacka LE (1983) Characteristics of magnesium polyphosphate cements derived from ammonium polyphosphate solutions. Cem Concr Res. https://doi.org/10.1016/0008-8846(83)90008-x

    Article  Google Scholar 

  70. Abdelrazig BEI, Sharp JH, El-Jazairi B (1988) The chemical composition of mortars made from Magnesia-phosphate cement. Cem Concr Res. https://doi.org/10.1016/0008-8846(88)90075-0

    Article  Google Scholar 

  71. Du YJ, Wei ML, Reddy KR, Jin F, Wu HL, Liu ZB (2014) New phosphate-based binder for stabilization of soils contaminated with heavy metals: leaching, strength and microstructure characterization. J Environ Manage. https://doi.org/10.1016/j.jenvman.2014.07.035

    Article  Google Scholar 

  72. Du Y, Yang J, Skariah Thomas B, Li L, Li H, Mohamed Shaban W, Tung Chong W (2020) Influence of hybrid graphene oxide/carbon nanotubes on the mechanical properties and microstructure of magnesium potassium phosphate cement paste. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.120449

    Article  Google Scholar 

  73. Su Y, Yang J, Liu D, Zhen S, Lin N, Zhou Y (2016) Effects of municipal solid waste incineration fly ash on solidification/stabilization of Cd and Pb by magnesium potassium phosphate cement. J Environ Chem Eng 4(1):259–265

    Article  Google Scholar 

  74. Wagh AS, Jeong SY (2004) Formation of chemically bonded ceramics with magnesium dihydrogen phosphate binder. Univ. of Chicago, IL (United States)

    Google Scholar 

  75. Ogunkunle, C. O., Oyedeji, S., Okoro, H. K., & Adimula, V. (2021) Interaction of nanoparticles with soil. In Nanomaterials for Soil Remediation (pp. 101–132). Elsevier

  76. Furat O, Baldermann A, Baldermann C, Dietzel M, Schmidt V (2021) Quantitative assessment of microstructural changes of hydrated cement blends due to leaching and carbonation, based on statistical analysis of image data. Constr Build Mater 302:124370

    Article  Google Scholar 

  77. Jiang ZL, Pan YJ, Lu JF, Wang YC (2022) Pore structure characterization of cement paste by different experimental methods and its influence on permeability evaluation. Cem Concr Res 159:106892

    Article  Google Scholar 

  78. Gong F, Zhang D, Sicat E, Ueda T (2014) Empirical estimation of pore size distribution in cement, mortar, and concrete. J Mater Civ Eng 26(7):04014023

    Article  Google Scholar 

  79. Xu B, Ma H, Shao H, Li Z, Lothenbach B (2017) Influence of fly ash on compressive strength and micro-characteristics of magnesium potassium phosphate cement mortars. Cem Concr Res 99:86–94

    Article  Google Scholar 

  80. Ma C, Chen B (2017) Experimental study on the preparation and properties of a novel foamed concrete based on magnesium phosphate cement. Constr Build Mater 137:160–168

    Article  Google Scholar 

  81. Wang L, Chen L, Guo B, Tsang DW, Huang L, Ok YS, Mechtcherine V (2020) Red mud-enhanced magnesium phosphate cement for remediation of Pb and as contaminated soil. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.123317

    Article  Google Scholar 

  82. Deja J (2002) Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cem Concr Res. https://doi.org/10.1016/s0008-8846(02)00904-3

    Article  Google Scholar 

  83. Akyıldız A, Köse ET, Yıldız (2017) Compressive strength and heavy metal leaching of concrete containing medical waste incineration ash. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.02.017

    Article  Google Scholar 

  84. Mastalska-Popławska J, Pernechele M, Troczynski T, Izak P, Góral Z (2019) Chemically bonded phosphate ceramics based on silica residues enriched with Iron(III) oxide and silicon carbide. J Mol Struct. https://doi.org/10.1016/j.molstruc.2018.11.087

    Article  Google Scholar 

  85. Aydın AA, Aydın A (2014) Development of an immobilization process for heavy metal containing galvanic solid wastes by use of sodium silicate and sodium tetraborate. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2013.12.017

    Article  Google Scholar 

  86. Cho JW, Ioku K, Goto S (1999) Effect of Pb(II) and Cr(VI) ions on the hydration of slag alkaline cement and the immobilization of these heavy metal ions. Adv Cem Res. https://doi.org/10.1680/adcr.1999.11.3.111

    Article  Google Scholar 

  87. Safari E, Ansari M, Ghazban F (2017) Preliminary assessment of cement kiln dust in solidification and stabilization of mercury containing waste from a chlor-alkali unit. J Mater Cycles Waste Manag 19(1):406–412

    Article  Google Scholar 

  88. Qiao XC, Poon CS, Cheeseman R (2007) Investigation into the stabilization/solidification performance of Portland cement through cement clinker phases. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2006.06.009

    Article  Google Scholar 

  89. Pomeroy M (2021) Encyclopedia of materials: technical ceramics and glasses. Elsevier

    Google Scholar 

  90. Takaoka M (2015) Mercury and mercury-containing waste management in Japan. J Mater Cycles Waste Manag 17(4):665–672

    Article  Google Scholar 

  91. Bah A, Feng D, Kedjanyi EAG, Shen Z, Bah A, Li F (2022) Solidification of (Pb–Zn) mine tailings by fly ash-based geopolymer I: influence of alkali reagents ratio and curing condition on compressive strength. J Mater Cycles Waste Manag 24(1):351–363

    Article  Google Scholar 

  92. Abdollahnejad Z, Pacheco-Torgal F, Félix T, Tahri W, Aguiar JB (2015) Mix design, properties and cost analysis of fly ash-based geopolymer foam. Constr Build Mater 80:18–30

    Article  Google Scholar 

  93. Thaarrini J, Dhivya S (2016) Comparative study on the production cost of geopolymer and conventional concretes. Int J Civ Eng 7(2):117–124

    Google Scholar 

  94. McLellan BC, Williams RP, Lay J, Van Riessen A, Corder GD (2011) Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J Clean Prod 19(9–10):1080–1090

    Article  Google Scholar 

  95. Zhang Q, Cao X, Ma R, Sun S, Fang L, Lin J, Luo J (2021) Solid waste-based magnesium phosphate cements: preparation, performance and solidification/stabilization mechanism. Constr Build Mater 297:123761

    Article  Google Scholar 

  96. Fan C, Wang B, Zhan T (2018) Review on cement stabilization/solidification of municipal solid waste incineration fly ash. Adv Mater Sci Eng. https://doi.org/10.1155/2018/5120649

    Article  Google Scholar 

  97. Lu H, Wei F, Tang J, Giesy JP (2016) Leaching of metals from cement under simulated environmental conditions. J Environ Manage. https://doi.org/10.1016/j.jenvman.2015.12.008

    Article  Google Scholar 

  98. Scrivener KL (2014) Options for the future of cement. Indian Concr J 88(7):11–21

    Google Scholar 

  99. Chuo SC, Mohamed SF, Mohd Setapar SH, Ahmad A, Jawaid M, Wani WA, Yaqoob AA, Mohamad Ibrahim MN (2020) Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation. Materials. https://doi.org/10.3390/ma13214993

    Article  Google Scholar 

  100. Chen P, Zheng H, Xu H, Gao Y, Ding X, Ma M (2019) Microbial induced solidification and stabilization of municipal solid waste incineration fly ash with high alkalinity and heavy metal toxicity. PLoS ONE. https://doi.org/10.1371/journal.pone.0223900

    Article  Google Scholar 

  101. Xu H, Zheng H, Wang J, Ding X, Chen P (2019) Laboratory method of microbial induced solidification/stabilization for municipal solid waste incineration fly ash. MethodsX. https://doi.org/10.1016/j.mex.2019.05.006

    Article  Google Scholar 

  102. Achal V, Pan X, Fu Q, Zhang D (2012) Biomineralization based remediation of As(III) contaminated soil by Sporosarcina Ginsengisoli. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2011.11.067

    Article  Google Scholar 

  103. Qian X, Fang C, Huang M, Achal V (2017) Characterization of fungal-mediated carbonate precipitation in the biomineralization of Chromate and lead from an aqueous solution and Soil. J Clean Prod. https://doi.org/10.1016/j.jclepro.2017.06.195

    Article  Google Scholar 

  104. Harikrishnan H, Kadaikunnan S, Moorthy IG, Anuf A, Ponmurugan K, Kumar RS (2015) Improvement of concrete durability by bacterial carbonate precipitation. South Indian j biol sci. https://doi.org/10.22205/sijbs/2015/v1/i2/100428

    Article  Google Scholar 

  105. Mori D, Uday KV (2021) A review on qualitative interaction among the parameters affecting ureolytic microbial-induced calcite precipitation. Environ Earth Sci. https://doi.org/10.1007/s12665-021-09613-7

    Article  Google Scholar 

  106. Okwadha GDO, Li J (2010) Optimum conditions for microbial carbonate precipitation. Chemosphere. https://doi.org/10.1016/j.chemosphere.2010.09.066

    Article  Google Scholar 

  107. Achal V (2012) Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1108.08033

    Article  Google Scholar 

  108. Li W, Dong B, Yang Z, Xu J, Chen Q, Li H, Xing F, Jiang Z (2018) Recent advances in intrinsic self-healing cementitious materials. Adv. https://doi.org/10.1002/adma.201705679

    Article  Google Scholar 

  109. Ghosh P, Mandal S, Chattopadhyay BD, Pal S (2005) Use of microorganism to improve the strength of cement mortar. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2005.03.005

    Article  Google Scholar 

  110. Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in natural environment, and their potential in Biotechnology: a review. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2016.00004

    Article  Google Scholar 

  111. Nampoothiri RS, Poornima V (2021) Influence of fungi: Trichoderma viride on properties of mud Brick. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2020.10.498

    Article  Google Scholar 

  112. Bindschedler S, Cailleau G, Verrecchi E (2016) Role of fungi in the biomineralization of calcite. Minerals. https://doi.org/10.3390/min6020041

    Article  Google Scholar 

  113. Pasquale V, Fiore S, Hlayem D, Lettino A, Huertas FJ, Chianese E, Dumontet S (2019) Biomineralization of carbonates induced by the fungi Paecilomyces inflatus and Plectosphaerella cucumerina. Int Biodeterior Biodegradation 140:57–66. https://doi.org/10.1016/j.ibiod.2019.03.005

    Article  Google Scholar 

  114. Dhami NK, Quirin ME, Mukherjee A (2017) Carbonate biomineralization and heavy metal remediation by calcifying fungi isolated from karstic caves. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2017.03.007

    Article  Google Scholar 

  115. Li Q, Csetenyi L, Paton GI, Gadd GM (2015) CaCO3 and SrCO3Bioprecipitation by fungi isolated from calcareous soil. Environ Microbiol. https://doi.org/10.1111/1462-2920.12954

    Article  Google Scholar 

  116. Oladipo OG, Awotoye OO, Olayinka A, Bezuidenhout CC, Maboeta MS (2018) Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Braz J Microbiol. https://doi.org/10.1016/j.bjm.2017.06.003

    Article  Google Scholar 

  117. Gadd GM (1994) The Genus Aspergillus. Springer, Boston

    Google Scholar 

  118. Abo-El-Enein SA, Ali AH, Talkhan FN, Abdel-Gawwad HA (2012) Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation. HBRC J. https://doi.org/10.1016/j.hbrcj.2013.02.001

    Article  Google Scholar 

  119. Zhang Y, Guo HX, Cheng XH (2015) Role of calcium sources in the strength and microstructure of microbial Mortar. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2014.12.040

    Article  Google Scholar 

  120. Xu W, Fang X, Huang T, Yao Z, Shen C, Liu J, Chen Z (2021) Influence of reactive magnesia content on loess solidification using biocarbonization of reactive magnesia. Arab J Geosci. https://doi.org/10.1007/s12517-021-08636-5

    Article  Google Scholar 

  121. Han L, Li J, Xue Q, Chen Z, Zhou Y, Poon CS (2020) Bacterial-induced mineralization (BIM) for soil solidification and heavy metal stabilization: a critical review. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.140967

    Article  Google Scholar 

  122. Wong LS, Oweida AF, Kong SY, Iqbal DM, Regunathan P (2020) The surface coating mechanism of polluted concrete by candida ethanolica induced calcium carbonate mineralization. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119482

    Article  Google Scholar 

  123. Rajasekar A, Wilkinson S, Moy CKS (2021) MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: a review. Environ Sci EcoTechnol. https://doi.org/10.1016/j.ese.2021.100096

    Article  Google Scholar 

  124. De Muynck W, De Belie N, Verstraete, (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2009.02.006

    Article  Google Scholar 

  125. Wu M, Hu X, Zhang Q, XueZhao D (2019) Growth environment optimization for inducing bacterial mineralization and its application in concrete healing. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.03.181

    Article  Google Scholar 

  126. Elkhateeb W, Elnahas MO, Daba G (2021) Review: Microbial induced mineralization of calcium carbonate for self-healing concrete. J Asian Nat Prod Biochem. https://doi.org/10.13057/biofar/f190101

    Article  Google Scholar 

  127. Seifan M, Samani AK, Berenjian A (2016) Bioconcrete: Next generation of self-healing concrete. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-016-7316-z

    Article  Google Scholar 

  128. Luo J, Chen X, Crump J, Zhou H, Davies DG, Zhou G, Zhang N, Jin C (2018) Interactions of fungi with concrete: significant importance for bio-based self-healing concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.12.233

    Article  Google Scholar 

  129. Chahal N, Siddique R, Rajor A (2012) Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2011.07.042

    Article  Google Scholar 

  130. Ghosh P, Mandal S, Chattopadhyay BD, Pal S (2005) Use of microorganism to improve the strength of cement mortar. Cem Concr Res 35:1980–1983

    Article  Google Scholar 

  131. Sidiq A, Gravina R, Giustozzi F (2019) Is concrete healing really efficient? A review Constr Build Mater 205:257–273

    Article  Google Scholar 

  132. Kim JH, Lee JY (2019) An optimum condition of MICP indigenous bacteria with contaminated wastes of heavy metal. J Mater Cycles Waste Manag 21(2):239–247

    Article  Google Scholar 

  133. Poornima, V., Venkatasubramani, R., Sreevidya, V., Pavan, C., & Nourin, A. (2020) Effect of microbial solution on compressive strength, water absorption and sorptivity of cement mortar incorporated with metakaolin. In IOP Conference Series: Materials Science and Engineering 872 (1) 012173 IOP Publishing

  134. Sumathi A, Murali G, Gowdhaman D, Amran M, Fediuk R, Vatin NI, Gowsika TS (2020) Development of bacterium for crack healing and improving properties of concrete under wet–dry and full-wet curing. Sustainability 12(24):10346

    Article  Google Scholar 

  135. Deng X, Li Y, Liu H, Zhao Y, Yang Y, Xu X, Wit BD (2021) Examining energy consumption and carbon emissions of microbial induced carbonate precipitation using the life cycle assessment method. Sustainability 13(9):4856

    Article  Google Scholar 

  136. Wiktor V, Jonkers HM (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2011.03.012

    Article  Google Scholar 

  137. Stanaszek-Tomal E (2020) Bacterial concrete as a sustainable building material? Sustainability 12(2):696

    Article  Google Scholar 

  138. Menon RR, Luo J, Chen X, Zhou H, Liu Z, Zhou G, Zhang N, Jin C (2019) Screening of fungi for potential application of self-healing concrete. Sci Rep. https://doi.org/10.1038/s41598-019-39156-8

    Article  Google Scholar 

  139. Luo J, Chen X, Crump J, Zho H, Davies DG, Zhou G, Zhang N, Jin C (2018) Interactions of fungi with concrete: significant importance for bio-based self-healing concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.12.233

    Article  Google Scholar 

  140. Haszeldine RS, Quinn O, England G, Wilkinson M, Shipton ZK, Evans JP, Heath J, Crossey L, Ballentine CJ, Graham M (2005) Natural geochemical analogues for carbon dioxide storage in deep geological porous reservoirs, a United Kingdom perspective. Oil Gas Sci Technol. https://doi.org/10.2516/ogst:2005004

    Article  Google Scholar 

  141. Konwarh R, Palanisamy SB, Jogi PK (2020) Harnessing the therapeutic myco-potential for concrete-crack healing: prospects and Snags. Mater Sci Res India. https://doi.org/10.13005/msri/170204

    Article  Google Scholar 

  142. Van Paassen LA, Ghose R, van der Linden T, van der Star WR, van Loosdrecht MC (2010) Quantifying biomediated ground improvement by ureolysis: large-scale Biogrout experiment. J GEOTECH GEOENVIRON. https://doi.org/10.1061/(asce)gt.1943-5606.0000382

    Article  Google Scholar 

  143. Dhami NK, Reddy MS, Mukherjee A (2013) Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00314

    Article  Google Scholar 

  144. Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Biotechnol 7(2):139–153. https://doi.org/10.1007/s11157-007-9126-3

    Article  Google Scholar 

  145. Filet AE, Gadret JP, Loygue M, Borel S (2012) Biocalcis and its applications for the consolidation of sands. In Grouting deep mixing. https://doi.org/10.1061/9780784412350.0152

    Article  Google Scholar 

  146. Rahman MM, Hora RN, Ahenkorah I, Beecham S, Karim MR, Iqbal A (2020) State-of-the-art review of microbial-induced calcite precipitation and its sustainability in engineering applications. Sustainability 12(15):6281. https://doi.org/10.3390/su12156281

    Article  Google Scholar 

  147. Wang X, Jin B, Xu B, Lan W, Qu C (2017) Melting characteristics during the vitrification of MSW incinerator fly ash by swirling melting treatment. J Mater Cycles Waste Manag 19(1):483–495. https://doi.org/10.1007/s10163-015-0449-9

    Article  Google Scholar 

  148. Song M, Liu J, Xu S (2015) Characterization and solidification/stabilization of iron-ore sintering gas cleaning residue. J Mater Cycles Waste Manag 17(4):790–797. https://doi.org/10.1007/s10163-014-0312-4

    Article  Google Scholar 

  149. Erol M, Küçükbayrak S, Ersoy-Meriçboyu A (2007) Production of glass-ceramics obtained from industrial wastes by means of controlled nucleation and crystallization. Chem Eng J. https://doi.org/10.1016/j.cej.2007.01.029

    Article  Google Scholar 

  150. Amutha Rani D, Boccaccini AR, Deegan D, Cheeseman CR (2008) Air pollution control residues from waste incineration: current UK situation and assessment of alternative technologies. Waste Manage. https://doi.org/10.1016/j.wasman.2007.10.007

    Article  Google Scholar 

  151. Eniu D, Simon S, Dinu C, Simon V, Bran S (2019) Network connectivity and dissolution properties of sodium calcium phosphate glasses. J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.06.006

    Article  Google Scholar 

  152. Jean JH, Fang YC, Dai SX, Wilcox DL (2004) Devitrification kinetics and mechanism of K2O-CaO-SrO-BaO-B2O3-SiO2 glass-ceramic. J Am Ceram Soc. https://doi.org/10.1111/j.1151-2916.2001.tb00841.x

    Article  Google Scholar 

  153. Sakai S, Hiraoka M (2000) Municipal solid waste incinerator residue recycling by thermal processes. Waste Manage. https://doi.org/10.1016/s0956-053x(99)00315-3

    Article  Google Scholar 

  154. Park YJ, Heo J (2002) Conversion to glass-ceramics from glasses made by MSW incinerator fly ash for recycling. Ceram Int. https://doi.org/10.1016/s0272-8842(02)00030-5

    Article  Google Scholar 

  155. Guo B, Pan D, Liu B, Volinsky AA, Fincan M, Du J, Zhang S (2017) Immobilization mechanism of Pb in fly ash-based geopolymer. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2016.12.139

    Article  Google Scholar 

  156. Saparuddin DI, Hisham NAN, Ab Aziz S, Matori KA, Honda S, Iwamoto Y, Zaid MHM (2020) Effect of sintering temperature on the crystal growth, microstructure and mechanical strength of foam glass-ceramic from waste materials. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2020.03.089

    Article  Google Scholar 

  157. Kemethmüller S, Roosen A, Goetz-Neunhoeffer F, Neubauer J (2006) Quantitative analysis of crystalline and amorphous phases in glass–ceramic composites like LTCC by the rietveld method. J Am Ceram Soc 89(8):2632–2637. https://doi.org/10.1111/j.1551-2916.2006.01113.x

    Article  Google Scholar 

  158. Lai F, Leng M, Li J, Liu Q (2020) The crystallization behaviors of SiO2-Al2O3-CaO-MgO-TiO2 glass-ceramic systems. Crystals. https://doi.org/10.3390/cryst10090794

    Article  Google Scholar 

  159. Meshalkin VP, Belyakov AV (2020) Methods used for the compaction and molding of ceramic matrix composites reinforced with carbon nanotubes. Processes. https://doi.org/10.3390/pr8081004

    Article  Google Scholar 

  160. Ojovan MI, Lee WE, Kalmykov SN (2019) An Introduction to Nuclear Waste Immobilisation. Elsevier

    Google Scholar 

  161. Bohn BP, Von Mühlen C, Pedrotti MF, Zimmer A (2021) A novel method to produce a ceramic paver recycling waste glass. Clean Eng Technol. https://doi.org/10.1016/j.clet.2021.100043

    Article  Google Scholar 

  162. Casasola R, Rincón JM, Romero M (2011) Glass–ceramic glazes for ceramic tiles: a review. J Mater Sci. https://doi.org/10.1007/s10853-011-5981-y

    Article  Google Scholar 

  163. Zhang S, Zhang Y, Qu Z (2019) Physicochemical property and chromium leaching behavior in different environments of glass ceramics prepared from AOD stainless steel slag. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.07.065

    Article  Google Scholar 

  164. Yu J, Sun L, Xiang J, Hu S, Su S, Qiu J (2012) Vaporization of heavy metals during thermal treatment of model solid waste in a fluidized bed incinerator. Chemosphere. https://doi.org/10.1016/j.chemosphere.2011.12.010

    Article  Google Scholar 

  165. Zhang J, Liu B, Zhang S (2021) A review of glass ceramic foams prepared from solid wastes: processing, heavy-metal solidification and volatilization, applications. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.146727

    Article  Google Scholar 

  166. Luo F, Tan H, Shu X, Miao Y, Chen S, Yuan B, Wang L, Xie Y, Lu X (2020) Rapidly immobilization of simulated An3+ radioactive contaminated soil as glass-ceramics by Microwave Sintering. https://doi.org/10.21203/rs.3.rs-86505/v1

  167. Nimjaroen C, Morimoto S, Tangsathitkulchai C (2009) Preparation and properties of porous glass using fly ash as a raw material. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2009.06.016

    Article  Google Scholar 

  168. Bingham PA, Hand RJ (2006) Vitrification of toxic wastes: a brief review. Adv Appl Ceram. https://doi.org/10.1179/174367606x81687

    Article  Google Scholar 

  169. Karayannis VG, Karapanagioti HK, Domopoulou AE, Komilis DP (2016) Stabilization/solidification of hazardous metals from solid wastes into ceramics. Waste Biomass Valorization. https://doi.org/10.1007/s12649-016-9713-z

    Article  Google Scholar 

  170. Yue Y, Zhang J, Sun F, Wu S, Pan Y, Zhou J, Qian G (2019) Heavy metal leaching and distribution in glass products from the co-melting treatment of electroplating sludge and MSWI fly ash. J Environ Manage 232:226–235. https://doi.org/10.1016/j.jenvman.2018.11.053

    Article  Google Scholar 

  171. Kim KW, Foster RI, Kim J, Sung HH, Yang D, Shon WJ, Lee KY (2019) Glass-ceramic composite wasteform to immobilize and stabilize a uranium-bearing waste generated from treatment of a spent uranium catalyst. J Nucl Mater 516:238–246. https://doi.org/10.1016/j.jnucmat.2019.01.005

    Article  Google Scholar 

  172. Ye L, Hong J, Ma X, Qi C, Yang D (2018) Life cycle environmental and economic assessment of ceramic tile production: a case study in China. J Clean Prod 189:432–441. https://doi.org/10.1016/j.jclepro.2018.04.112

    Article  Google Scholar 

  173. Schmitz A, Kamiński J, Scalet BM, Soria A (2011) Energy consumption and CO2 emissions of the European glass industry. Energy Policy 39(1):142–155. https://doi.org/10.1016/j.enpol.2010.09.022

    Article  Google Scholar 

  174. Messler RW (2006) In Integral mechanical attachment a resurgence of the oldest method of joining. Butterworth-Heinemann, Essay, pp 239–277

    Book  Google Scholar 

  175. Torras J, Buj I, Rovira M, de Pablo J (2011) Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements. J Hazard Mater 186(2–3):1954–1960. https://doi.org/10.1016/j.jhazmat.2010.12.093

    Article  Google Scholar 

  176. Lee YS, Park W (2018) Current challenges and future directions for bacterial self-healing concrete. Appl Microbiol Biotechnol 102(7):3059–3070. https://doi.org/10.1007/s00253-018-8830-y

    Article  Google Scholar 

  177. Hench, L.L., Clark, D.E., & Yen-Bower, E.L. (1979). Surface leaching of glasses and glass-ceramics (NUREG/CP--0005) Casey, LA. (Eds). United States

  178. Yilin P, Wenhua Z, Yunsheng Z, Wanting Z, Zaixiang Z, Fan W (2021) Migration and transformation of heavy metals in glass-ceramics and the mechanism of stabilization. Ceram Int 47(17):24663–24674. https://doi.org/10.1016/j.ceramint.2021.05.188

    Article  Google Scholar 

  179. He X, Lai Z, Yan T, Wu J, Lu Z, Lv S, Fan X (2019) Hydration characteristics and microstructure of magnesium phosphate cement in presence of Cu2+. Constr Build Mater 225:234–242. https://doi.org/10.1016/j.conbuildmat.2019.07.184

    Article  Google Scholar 

  180. Yang M, Guo Z, Deng Y, Xing X, Qiu K, Long J, Li J (2012) Preparation of CaO–Al2O3–SiO2 glass ceramics from coal gangue. Int J Miner Process. https://doi.org/10.1016/j.minpro.2011.11.004

    Article  Google Scholar 

  181. Omoregie AI, Ginjom RH, Nissom PM (2018) Microbially induced carbonate precipitation via ureolysis process: a mini-review. Trans innov sci technol 5(4):245–256

    Google Scholar 

  182. Bosoaga A, Masek O, Oakey JE (2009) CO2 capture technologies for cement industry. Energy procedia 1(1):133–140. https://doi.org/10.1016/j.egypro.2009.01.020

    Article  Google Scholar 

  183. Cao Z, Myers RJ, Lupton RC, Duan H, Sacchi R, Zhou N, Liu G (2020) The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nat Commun 11(1):1–9. https://doi.org/10.1038/s41467-020-17583-w

    Article  Google Scholar 

  184. Chimphango A, Amiandamhen SO, Görgens JF, Tyhoda L (2021) Prospects for paper sludge in magnesium phosphate cement: composite board properties and techno-economic analysis. Waste and Biomass Valorization 12(9):5211–5233. https://doi.org/10.1007/s12649-021-01356-7

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted while Ms. Shivani Tyagi was working as a doctoral candidate at IIT Mandi. It is gratefully acknowledged that this work was undertaken through the scholarship funded by Ministry of Human Resource and Development (MHRD), Government of India (GoI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Annachhatre.

Ethics declarations

Conflict of interest

There are no financial or non-financial competing interests to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, S., Annachhatre, A.P. A review on recent trends in solidification and stabilization techniques for heavy metal immobilization. J Mater Cycles Waste Manag 25, 733–757 (2023). https://doi.org/10.1007/s10163-022-01583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01583-7

Keywords

Navigation