Skip to main content
Log in

Auditory Enhancement in Cochlear-Implant Users Under Simultaneous and Forward Masking

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Auditory enhancement is the phenomenon whereby the salience or detectability of a target sound within a masker is enhanced by the prior presentation of the masker alone. Enhancement has been demonstrated using both simultaneous and forward masking in normal-hearing listeners and may play an important role in auditory and speech perception within complex and time-varying acoustic environments. The few studies of enhancement in hearing-impaired listeners have reported reduced or absent enhancement effects under forward masking, suggesting a potentially peripheral locus of the effect. Here, auditory enhancement was measured in eight cochlear-implant (CI) users with direct stimulation. Masked thresholds were measured under simultaneous and forward masking as a function of the number of masking electrodes, and the electrode spacing between the maskers and the target. Evidence for auditory enhancement was obtained under simultaneous masking, qualitatively consistent with results from normal-hearing listeners. However, no significant enhancement was observed under forward masking, in contrast to earlier results with normal-hearing listeners. The results suggest that the normal effects of auditory enhancement are partially but not fully experienced by CI users. To the extent that the CI users’ results differ from normal, it may be possible to apply signal processing to restore the missing aspects of enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  • Anderson ES, Oxenham AJ, Nelson PB, Nelson DA (2012) Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users. J Acoust Soc Am 132:3925–3934

    Article  PubMed  PubMed Central  Google Scholar 

  • Antunes FM, Nelken I, Covey E, Malmierca MS (2010) Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLoS One 5:e14071

    Article  PubMed  PubMed Central  Google Scholar 

  • Beim JA, Elliott M, Oxenham AJ, Wojtczak M (2015) Stimulus frequency otoacoustic emissions provide no evidence for the role of efferents in the enhancement effect. J Assoc Res Otolaryngol 16:613–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Berlin CI, Hood LJ, Cecola RP, Jackson DF, Szabo P (1993) Does type I afferent neuron dysfunction reveal itself through lack of efferent suppression? Hear Res 65:40–50

    Article  CAS  PubMed  Google Scholar 

  • Byrne AJ, Stellmack MA, Viemeister NF (2011) The enhancement effect: evidence for adaptation of inhibition using a binaural centering task. J Acoust Soc Am 129:2088–2094

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrne AJ, Stellmack MA, Viemeister NF (2013) The salience of enhanced components within inharmonic complexes. J Acoust Soc Am 134:2631–2634

    Article  PubMed  PubMed Central  Google Scholar 

  • Carcagno S, Semal C, Demany L (2012) Auditory enhancement of increments in spectral amplitude stems from more than one source. J Assoc Res Otolaryngol 13:693–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Carcagno S, Semal C, Demany L (2013a) Enhancement of increments in spectral amplitude: further evidence for a mechanism based on central adaptation. Adv Exp Med Biol 787:175–182

    Article  PubMed  Google Scholar 

  • Carcagno S, Semal C, Demany L (2013b) No need for templates in the auditory enhancement effect. PLoS One 8:e67874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carcagno S, Plack CJ, Portron A, Semal C, Demany L (2014) The auditory enhancement effect is not reflected in the 80-Hz auditory steady-state response. J Assoc Res Otolaryngol 15:621–630

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlyon RP (1989) Changes in the masked thresholds of brief tones produced by prior bursts of noise. Hear Res 41:223–236

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Oxenham AJ (2015) New perspectives on the measurement and time course of auditory enhancement. J Exp Psychol Hum Percept Perform 41:1696–1708

    Article  PubMed  PubMed Central  Google Scholar 

  • Goupell MJ, Mostardi MJ (2012) Evidence of the enhancement effect in electrical stimulation via electrode matching (L). J Acoust Soc Am 131:1007–1010

    Article  PubMed  PubMed Central  Google Scholar 

  • Guinan JJ Jr (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27:589–607

    Article  PubMed  Google Scholar 

  • Henry BA, Turner CW, Behrens A (2005) Spectral peak resolution and speech recognition in quiet: normal hearing, hearing impaired, and cochlear implant listeners. J Acoust Soc Am 118:1111–1121

    Article  PubMed  Google Scholar 

  • Holt LL, Lotto AJ (2002) Behavioral examinations of the level of auditory processing of speech context effects. Hear Res 167:156–169

    Article  PubMed  Google Scholar 

  • Kiang NY-S, Watanabe T, Thomas EC, Clark LF (1965) Discharge patterns of single fibres in the cat’s auditory nerve. MIT Press, Cambridge

    Google Scholar 

  • Levitt H (1971) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49:467–477

    Article  Google Scholar 

  • Moore BCJ, Glasberg BR, Oxenham AJ (2012) Effects of pulsing of a target tone on the ability to hear it out in different types of complex sounds. J Acoust Soc Am 131:2927–2937

    Article  PubMed  PubMed Central  Google Scholar 

  • Neff DL (1986) Confusion effects with sinusoidal and narrowband-noise forward maskers. J Acoust Soc Am 79:1519–1529

    Article  CAS  PubMed  Google Scholar 

  • Nelson PC, Young ED (2010) Neural correlates of context-dependent perceptual enhancement in the inferior colliculus. J Neurosci 30:6577–6587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer AR, Summerfield Q, Fantini DA (1995) Responses of auditory-nerve fibers to stimuli producing psychophysical enhancement. J Acoust Soc Am 97:1786–1799

    Article  CAS  PubMed  Google Scholar 

  • Richards VM, Huang R, Kidd G Jr (2004) Masker-first advantage for cues in informational masking. J Acoust Soc Am 116:2278–2288

    Article  PubMed  Google Scholar 

  • Schouten JF (1940) The residue, a new component in subjective sound analysis. Proc Kon Ned Akad Wetensch 43:356–365

    Google Scholar 

  • Serman M, Semal C, Demany L (2008) Enhancement, adaptation, and the binaural system. J Acoust Soc Am 123:4412–4420

    Article  PubMed  Google Scholar 

  • Smith RL (1979) Adaptation, saturation, and physiological masking in single auditory-nerve fibers. J Acoust Soc Am 65:166–178

    Article  CAS  PubMed  Google Scholar 

  • Summerfield Q, Haggard MP, Foster J, Gray S (1984) Perceiving vowels from uniform spectra: phonetic exploration of an auditory after-effect. Percept Psychophys 35:203–213

    Article  CAS  PubMed  Google Scholar 

  • Thibodeau LM (1991) Performance of hearing-impaired persons on auditory enhancement tasks. J Acoust Soc Am 89:2843–2850

    Article  CAS  PubMed  Google Scholar 

  • Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24:10440–10453

    Article  CAS  PubMed  Google Scholar 

  • Viemeister NF (1980) Adaptation of masking. In: van den Brink G, Bilsen FA (eds) Psychophysical, physiological and behavioural studies in hearing. Delft U.P, Delft, pp 190–198

    Chapter  Google Scholar 

  • Viemeister NF, Bacon SP (1982) Forward masking by enhanced components in harmonic complexes. J Acoust Soc Am 71:1502–1507

    Article  CAS  PubMed  Google Scholar 

  • Viemeister NF, Byrne AJ, Stellmack MA (2013) Spectral and level effects in auditory signal enhancement. Adv Exp Med Biol 787:167–174

    Article  PubMed  Google Scholar 

  • Wang N, Oxenham AJ (2016) Effects of auditory enhancement on the loudness of masker and target components. Hear Res 333:150–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang N, Kreft H, Oxenham AJ (2012) Vowel enhancement effects in cochlear-implant users. J Acoust Soc Am 131:EL421–EL426

    Article  PubMed  Google Scholar 

  • Wang N, Kreft HA, Oxenham AJ (2015) Loudness context effects in normal-hearing listeners and cochlear-implant users. J Assoc Res Otolaryngol 16:535–545

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang N, Kreft H, Oxenham AJ (2016) Induced loudness reduction and enhancement in acoustic and electric hearing. J Assoc Res Otolaryngol 17:383–391

    Article  PubMed  Google Scholar 

  • Wilson JP (1970) An auditory afterimage. In: Plomp R, Smoorenburg GF (eds) Frequency analysis and psychophysics of hearing. Sijthof, Leiden, pp 303–315

    Google Scholar 

Download references

Acknowledgments

This research was supported by NIDCD Grant R01 DC 012262 and by the Lions 5M International Hearing Foundation. The authors wish to extend special thanks to the subjects who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Kreft.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreft, H.A., Oxenham, A.J. Auditory Enhancement in Cochlear-Implant Users Under Simultaneous and Forward Masking. JARO 18, 483–493 (2017). https://doi.org/10.1007/s10162-017-0618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-017-0618-8

Keywords

Navigation