Skip to main content
Log in

Oral paricalcitol versus oral calcitriol in continuous ambulatory peritoneal dialysis patients with secondary hyperparathyroidism

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Secondary hyperparathyroidism (SHPT) is common in end-stage renal disease. Our primary objective was to evaluate the efficacy of oral paricalcitol versus oral calcitriol on serum intact parathyroid hormone (iPTH) and mineral bone parameters in continuous ambulatory peritoneal dialysis (CAPD) patients with SHPT. The secondary objective was to analyze highly sensitive C-reactive protein (hsCRP) and peritoneal membrane function in both groups.

Methods

This was a prospective randomized control trial. CAPD patients with SHPT were randomized to paricalcitol or calcitriol for 15 weeks. Serum intact iPTH, calcium, phosphate and alkaline phosphatase (ALP) were measured at baseline and every 3 weeks. Serum hsCRP and peritoneal membrane functions were measured at baseline and at week 15.

Results

A total of 26 patients were enrolled and randomized—12 to paricalcitol and 14 to calcitriol. Serum iPTH reduced significantly in both groups and there was no difference in the incidence of ≥50 % reduction of iPTH between both groups. There was a significant increase in serum calcium in both groups but there were no differences in serum phosphorus across the visits. The incidence of hypercalcemia was the same in both groups. Serum calcium–phosphorus (Ca × P) product increased in the paricalcitol group but decreased in the calcitriol group. Serum ALP decreased significantly in both groups. There were also no differences in pre- and post-treatment serum hsCRP and peritoneal function test (PFT) in both groups.

Conclusion

Both oral paricalcitol and calcitriol were equally efficacious in reducing serum iPTH but were associated with significantly higher serum calcium. Serum Ca × P product increased in the paricalcitol group and decreased in the calcitriol group. Serum hsCRP level and PFT were not affected by either treatment. A larger randomized controlled trial is indicated to confirm these initial findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. 2009;76(Suppl 113):S50–99.

    Google Scholar 

  2. Couttenye MM, D’Haese PC, Van Hoof VO, Lemoniatou E, Goodman W, Verpooten GA, et al. Low serum levels of alkaline phosphatase of bone origin: a good marker of adynamic bone disease in haemodialysis patients. Nephrol Dial Transplant. 1996;11(6):1065–72.

    Article  CAS  PubMed  Google Scholar 

  3. Ritz E, Schomig M, Bommer J. Osteodystrophy in the millennium. Kidney Int. 1999;73(Suppl):S94–8.

    Article  CAS  Google Scholar 

  4. Khan S. Vitamin D deficiency and secondary hyperparathyroidism among patients with chronic kidney disease. Am J Med Sci. 2007;333(4):201–7.

    Article  PubMed  Google Scholar 

  5. Yudd M, Llach F. Current medical management of secondary hyperparathyroidism. Am J Med Sci. 2000;320(2):100–6.

    Article  CAS  PubMed  Google Scholar 

  6. Davies MR, Hruska KA. Pathophysiological mechanisms of vascular calcification in end-stage renal disease. Kidney Int. 2001;60(2):472–9.

    Article  CAS  PubMed  Google Scholar 

  7. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 2000;342(20):1478–83.

    Article  CAS  PubMed  Google Scholar 

  8. Chertow GM, Burke SK, Raggi P. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int. 2002;62(1):245–52.

    Article  CAS  PubMed  Google Scholar 

  9. Milliner DS, Zinsmeister AR, Lieberman E, Landing B. Soft tissue calcification in pediatric patients with end-stage renal disease. Kidney Int. 1990;38(5):931–6.

    Article  CAS  PubMed  Google Scholar 

  10. Ganesh SK, Stack AG, Levin NW, Hulbert-Shearon T, Port FK. Association of elevated serum PO(4), Ca × PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol. 2001;12(10):2131–8.

    CAS  PubMed  Google Scholar 

  11. Block GA, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium X phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998;31(4):607–17.

    Article  CAS  PubMed  Google Scholar 

  12. Sprague SM, Lerma E, McCormmick D, Abraham M, Batlle D. Suppression of parathyroid hormone secretion in hemodialysis patients: comparison of paricalcitol with calcitriol. Am J Kidney Dis. 2001;38(Suppl 5):S51–6.

    Article  CAS  PubMed  Google Scholar 

  13. Olafur SI, Darryl LQ. Comparison of treatment for mild secondary hyperparathyroidism in haemodialysis patients. Kidney Int. 2000;57:282–92.

    Article  Google Scholar 

  14. Yakahashi F, Finch JL, Denda M, Dusso AS, Brown AJ, Slatopolsky E. A new analog of 1,25(OH)2D2, 19-nor-1,25(OH)2D2, suppresses serum PTH and parathyroid gland growth in uremic rats without elevation of intestinal vitamin D receptor content. Am J Kidney Dis. 1997;30:105–12.

    Article  Google Scholar 

  15. Brown AJ, Finch J, Slatopolsky E. Differential effects of 19-nor-1, 25-(OH)2D2 and 1 a-hydroxyvitamin D3 on the intestinal calcium and phosphate transport. J Lab Clin Med. 2002;139:279–84.

    Article  CAS  PubMed  Google Scholar 

  16. Abdul Gafor AH, Saidin R, Loo CY, Mohd R, Zainudin S, Shah SA, Norella KC. Intravenous calcitriol versus paricalcitol in haemodialysis patients with severe secondary hyperparathyroidism. Nephrology (Carlton). 2009;14(5):488–92.

    Article  CAS  Google Scholar 

  17. Parikh NI, Hwang SJ, Larson MG, Meigs JB, Levy D, Fox CS. Cardiovascular disease risk factors in chronic kidney disease: overall burden and rates of treatment and control. Arch Intern Med. 2006;166(17):1884–91.

    Article  PubMed  Google Scholar 

  18. Timms PM, Mannan N, Hitman GA, Noonan K, Mills PG, Syndercombe-Court D, et al. Circulating MMP9, vitamin D and variation in the TIMP-1 response with VDR genotype: mechanisms for inflammatory damage in chronic disorders? QJM. 2002;95(12):787–96.

    Article  CAS  PubMed  Google Scholar 

  19. Watson KE, Abrolat ML, Malone LL, Hoeg JM, Doherty T, Detrano R, et al. Active serum vitamin D levels are inversely correlated with coronary calcification. Circulation. 1997;96(6):1755–60.

    Article  CAS  PubMed  Google Scholar 

  20. London GM, Guerin AP, Verbeke FH, et al. Mineral metabolism and arterial functions in end-stage renal disease: potential role of 25-hydroxyvitamin D deficiency. J Am Soc Nephrol. 2007;18(2):613–20.

    Article  CAS  PubMed  Google Scholar 

  21. Ross EA, Tian J, Abboud H, et al. Oral paricalcitol for the treatment of secondary hyperparathyroidism in patients on hemodialysis or peritoneal dialysis. Am J Nephrol. 2008;28(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  22. Sprague SM, Llach F, Amdahl M, Taccetta C, Batlle D. Paricalcitol versus calcitriol in the treatment of secondary hyperparathyroidism. Kidney Int. 2003;63(4):1483–90.

    Article  CAS  PubMed  Google Scholar 

  23. Kurz P, Roth P, Werner E, Vlachojannis J, Grutzmacher P. Factors influencing transperitoneal calcium balance during CAPD. ASAIO J. 1992;38(3):589–92.

    Article  Google Scholar 

  24. Simonsen O, Venturoli D, Wieslander A, Carlsson O, Rippe B. Mass transfer of calcium across the peritoneum at three different peritoneal dialysis fluid Ca2+ and glucose concentrations. Kidney Int. 2003;64(1):208–15.

    Article  CAS  PubMed  Google Scholar 

  25. Llach F, Yudd M. Paricalcitol in dialysis patients with calcitriol-resistant secondary hyperparathyroidism. Am J Kidney Dis. 2001;38(Suppl 5):S45–50.

    Article  CAS  PubMed  Google Scholar 

  26. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15:2208–18.

    Article  CAS  PubMed  Google Scholar 

  27. Massry SG, Coburn JW, Lee DB, Jowsey J, Kleeman CR. Clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42(Suppl 3):S1–201.

    Google Scholar 

  28. Cozzolino M, Dusso AS, Slatoplolsky E. Role of calcium–phosphate product and bone-associated proteins on vascular calcification in renal failure. J Am Soc Nephrol. 2001;12:2511–6.

    CAS  PubMed  Google Scholar 

  29. Ha SK, Park CH, Seo JK, et al. Studies on bone markers and bone mineral density in patients with chronic renal failure. Yonsei Med J. 1996;37(5):350–6.

    CAS  PubMed  Google Scholar 

  30. Martin KJ, Gonzalez EA, Gellens M, Hamm LL, Abboud H, Lindberg J. 19-Nor-1-alpha-25-dihydroxyvitamin D2 (Paricalcitol) safely and effectively reduces the levels of intact parathyroid hormone in patients on hemodialysis. J Am Soc Nephrol. 1998;9(8):1427–32.

    CAS  PubMed  Google Scholar 

  31. Noorul Afidza M, Ruslinda M, Norazinizah AM, et al. Serum vitamin D levels in normal subjects and patients with CKD [abstract]. In: Proceeding of the 27th Annual Congress of Malaysia Society of Nephrology, Kuala Lumpur, Malaysia, 6–8 May 2011. Abstract OP01: p 82.

  32. Becker LE, Koleganova N, Piecha G, et al. Effect of paricalcitol and calcitriol on aortic wall remodeling in uninephrectomized ApoE knockout mice. Am J Physiol Renal Physiol. 2011;300:772–82.

    Article  Google Scholar 

  33. Izquierdo MJ, Cavia M, Muñiz P, et al. Paricalcitol reduces oxidative stress and inflammation in hemodialysis patients. BMC Nephrol. 2012;13:159.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Guillot X, Semerano L, Saidenberg-Kermanac’h N, Falgarone G, Boissier MC. Vitamin D and inflammation. Jt Bone Spine. 2010;77:552–7.

    Article  CAS  Google Scholar 

  35. Ruslinda M, Rozita M, Norella Kong CT, et al. Effects of calcitriol supplement on serum levels of inflammatory biomarkers in CKD patients with hypovitaminosis D. In: Proceeding of the 27th Annual Congress of Malaysia Society of Nephrology, Kuala Lumpur, Malaysia, 6–8 May 2011. Abstract OP018: p 83.

  36. Chung SH, Heimbürger O, Stenvinkel P, Bergström J, Lindholm B. Association between inflammation and changes in residual renal function and peritoneal transport rate during the first year of dialysis. Nephrol Dial Transplant. 2001;16(11):2240–5.

    Article  CAS  PubMed  Google Scholar 

  37. Wang TJ, Gona P, Larson MG, et al. Multiple biomarkers and the risk of incident hypertension. Hypertension. 2007;49(3):432–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Faculty of Medicine UKM Research Grant FF-262-2010.

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Halim Abdul Gafor.

About this article

Cite this article

Jamaluddin, E.J., Gafor, A.H.A., Yean, L.C. et al. Oral paricalcitol versus oral calcitriol in continuous ambulatory peritoneal dialysis patients with secondary hyperparathyroidism. Clin Exp Nephrol 18, 507–514 (2014). https://doi.org/10.1007/s10157-013-0844-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-013-0844-2

Keywords

Navigation