Skip to main content
Log in

Autosomal dominant polycystic kidney disease: recent advances in pathogenesis and potential therapies

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is the most common progressive hereditary kidney disease. In 85–90 % of cases, ADPKD results from a mutation in the PKD1 gene, and the other 10–15 % of the cases are accounted for by mutations in PKD2. PKD1 and PKD2 encode polycystin-1 and polycystin-2. Polycystin-1 may be a receptor that controls the channel activity of polycystin-2 as part of the polycystin signaling complex. ADPKD is characterized by the progressive development of fluid-filled cysts derived from renal tubular epithelial cells that gradually compress the parenchyma and compromise renal function. In recent years, considerable interest has developed in the primary cilia as a site of the proteins that are involved in renal cystogenesis. The pathological processes that facilitate cyst enlargement are hypothesized to result from two specific cellular abnormalities: (1) increased fluid secretion into the cyst lumen and (2) inappropriately increased cell division by the epithelium lining the cyst. Since there is no clinically approved specific or targeted therapy, current practice focuses on blood pressure control and statin therapy to reduce the cardiac mortality associated with chronic kidney disease. However, recent advances in our understanding of the pathways that govern renal cystogenesis have led to a number of intriguing possibilities in regard to therapeutic interventions. The purpose of this article is to review the pathogenesis of renal cyst formation and to review novel targets for the treatment of ADPKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Torres VE, Bankir L, Grantham JJ. A case for water in the treatment of polycystic kidney disease. Clin J Am Soc Nephrol. 2009;4:1140–50.

    Article  PubMed  CAS  Google Scholar 

  2. Norby S, Schwartz M. Possible locus for polycystic kidney disease on chromosome 2. Lancet. 1990;336:323–4.

    Article  PubMed  CAS  Google Scholar 

  3. Grantham JJ, Torres VE, Chapman AB, Guay-Woodford LM, Bae KT, King BF Jr, et al. Volume progression in polycystic kidney disease. N Engl J Med. 2006;354:2122–30.

    Article  PubMed  CAS  Google Scholar 

  4. Chang MY, Ong AC. Autosomal dominant polycystic kidney disease: recent advances in pathogenesis and treatment. Nephron Physiol. 2008;108:1–7.

    Article  Google Scholar 

  5. Torres VE, Harris PC. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int. 2009;76:149–68.

    Article  PubMed  Google Scholar 

  6. Lee YR, Lee KB. Reliability of magnetic resonance imaging for measuring the volumetric indices in autosomal-dominant polycystic kidney disease: correlation with hypertension and renal function. Nephron Clin Pract. 2006;103:c173–80.

    Article  PubMed  Google Scholar 

  7. Chapman AB, Guay-Woodford LM, Grantham JJ, Torres VE, Bae KT, Baumgarten DA, et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Kidney Int. 2003;64:1035–45.

    Article  PubMed  Google Scholar 

  8. O’Neil WC, Robbin ML, Bae KT, Grantham JJ, Chapman AB, Guay-Woodford LM, et al. Sonographic assessment of the severity and progression of autosomal dominant polycystic kidney disease: the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Am J Kidney Dis. 2005;46:1058–64.

    Article  Google Scholar 

  9. Bae KT, Tao C, Zhu F, Bost JE, Chapman AB, Grantham JJ, et al. MRI-based kidney volume measurements in ADPKD: reliability and effect of gadolinium enhancement. Clin J Am Soc Nephrol. 2009;4:719–25.

    Article  PubMed  Google Scholar 

  10. Harris PC, Torres VE. Polycystic kidney disease. Annu Rev Med. 2009;60:321–37.

    Article  PubMed  CAS  Google Scholar 

  11. The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell. 1994;77:881–94.

    Article  Google Scholar 

  12. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996;272:1339–42.

    Article  PubMed  CAS  Google Scholar 

  13. Rossetti S, Consugar MB, Chapman AB, Torres VE, Guay-Woodford LM, Grantham JJ, et al. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2007;18:2143–60.

    Article  PubMed  CAS  Google Scholar 

  14. Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet. 1995;10:151–60.

    Article  PubMed  CAS  Google Scholar 

  15. Nims N, Vassmer D, Maser RL. Transmembrane domain analysis of polycystin-1, the product of the polycystic kidney disease 1 (PKD1) gene: evidence for 11 membrane-spanning domains. Biochemistry. 2003;42:13035–48.

    Article  PubMed  CAS  Google Scholar 

  16. Li A, Tian X, Sung SW, Somolo S. Identification of two novel polycystic kidney disease-1-like genes in human and mouse genomes. Genomics. 2003;81:596–608.

    Article  PubMed  CAS  Google Scholar 

  17. Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, et al. Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem. 1999;274:28557–65.

    Article  PubMed  CAS  Google Scholar 

  18. Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev. 2007;87:165–217.

    Article  PubMed  CAS  Google Scholar 

  19. Celic A, Petri ET, Demeler B, Ehrlich BE, Boggon TJ. Domain mapping of the polycystin-2 C-terminal tail using de novo molecular modeling and biophysical analysis. J Biol Chem. 2008;283:28305–12.

    Article  PubMed  CAS  Google Scholar 

  20. Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG. PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet. 1997;16:179–83.

    Article  PubMed  CAS  Google Scholar 

  21. Wilson PD. Polycystic kidney disease. N Engl J Med. 2004;350:151–64.

    Article  PubMed  CAS  Google Scholar 

  22. Chauvet V, Tian X, Husson H, Grimm DH, Wang T, Hiesberger T, et al. Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C-terminus. J Clin Invest. 2004;114:1433–43.

    PubMed  CAS  Google Scholar 

  23. Low SH, Vasanth S, Larson CH, Mukherjee S, Sharma N, Kinter MT, et al. Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell. 2006;10:57–69.

    Article  PubMed  CAS  Google Scholar 

  24. Qamar S, Vadivelu M, Sandford R. TRP channels and kidney disease: lessons from polycystic kidney disease. Biochem Soc Trans. 2007;35:124–8.

    Article  PubMed  CAS  Google Scholar 

  25. Li X, Luo Y, Starremans PG, McNamara CA, Pei Y, Zhou J. Polycystin-1 and polycystin-2 regulate the cell cycle through the helix–loop–helix inhibitor Id2. Nat Cell Biol. 2005;7:1202–12.

    Article  PubMed  Google Scholar 

  26. Grantham JJ, Cook LT, Torres VE, Bost JE, Chapman AB, Harris PC, et al. Determinants of renal volume in autosomal-dominant polycystic kidney disease. Kidney Int. 2008;73:108–16.

    Article  PubMed  CAS  Google Scholar 

  27. Lantinga-van Leeuwen IS, Dauwerse JG, Baelde HJ, Leonhard WN, van de Wal A, Ward CJ, et al. Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum Mol Genet. 2004;13:3069–77.

    Google Scholar 

  28. Qian F, Watnick TJ, Onuchic LF, Germino GG. The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell. 1996;87:979–87.

    Article  PubMed  CAS  Google Scholar 

  29. Brasier JL, Henske EP. Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J Clin Invest. 1997;99:194–9.

    Article  PubMed  CAS  Google Scholar 

  30. Grantham JJ, Geiser JL, Evan AP. Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int. 1987;31:1145–52.

    Article  PubMed  CAS  Google Scholar 

  31. Jiang ST, Chiou YY, Wang E, Lin HK, Lin YT, Chi YC, et al. Defining a link with autosomal-dominant polycystic kidney disease in mice with congenitally low expression of Pkd1. Am J Pathol. 2006;168:205–20.

    Article  PubMed  CAS  Google Scholar 

  32. Nishio S, Hatano M, Nagata M, Horie S, Koike T, Tokuhisa T, et al. Pkd1 regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation. J Clin Invest. 2005;115:910–8.

    PubMed  CAS  Google Scholar 

  33. Sullivan LP, Wallace DP, Grantham JJ. Chloride and fluid secretion in polycystic kidney disease. J Am Soc Nephrol. 1998;9:903–16.

    PubMed  CAS  Google Scholar 

  34. Belibi FA, Reif G, Wallace DP, Yamaguchi T, Olsen L, Li H, et al. Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int. 2004;66:964–73.

    Article  PubMed  CAS  Google Scholar 

  35. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol. 2000;151:709–18.

    Article  PubMed  CAS  Google Scholar 

  36. Lehman JM, Michaud EJ, Schoeb TR, Aydin-Son Y, Miller M, Yoder BK. The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of mice and men. Dev Dyn. 2008;237:1960–71.

    Article  PubMed  Google Scholar 

  37. Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol. 2002;13:2508–16.

    Article  PubMed  CAS  Google Scholar 

  38. Ward CJ, Yuan D, Masyuk TV, Wang X, Punyashthiti R, Whelan RS, et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet. 2003;12:2703–10.

    Article  PubMed  CAS  Google Scholar 

  39. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33:129–37.

    Article  PubMed  CAS  Google Scholar 

  40. Wang S, Zhang J, Nauli SM, Li X, Starremans PG, Luo Y, et al. Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol Cell Biol. 2007;27:3241–52.

    Article  PubMed  CAS  Google Scholar 

  41. Bhunia AK, Piontek K, Boletta A, Liu A, Qian F, Xu PN, et al. PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell. 2002;109:157–68.

    Article  PubMed  CAS  Google Scholar 

  42. Low SH, Vasanth S, Larson CH, Mukherjee S, Sharma N, Kinter MT, et al. Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell. 2006;10:57–69.

    Article  PubMed  CAS  Google Scholar 

  43. Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA. 2006;103:5466–71.

    Article  PubMed  CAS  Google Scholar 

  44. Puri S, Magenheimer BS, Maser RL, Ryan EM, Zien CA, Walker DD, et al. Polycystin-1 activates the calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway. J Biol Chem. 2004;279:55455–64.

    Article  PubMed  CAS  Google Scholar 

  45. Kim E, Arnould T, Sellin LK, Benzing T, Fan MJ, Gruning W, et al. The polycystic kidney disease 1 gene product modulates Wnt signaling. J Biol Chem. 1999;274:4947–53.

    Article  PubMed  CAS  Google Scholar 

  46. Lancaster MA, Gleeson JG. Cystic kidney disease: the role of Wnt signaling. Trends Mol Med. 2010;16:349–60.

    Article  PubMed  CAS  Google Scholar 

  47. Eggenschwiler JT, Anderson KV. Cilia and developmental signaling. Annu Rev Cell Dev Biol. 2007;23:345–73.

    Article  PubMed  CAS  Google Scholar 

  48. Pei Y. Diagnostic approach in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2006;1:1108–14.

    Article  PubMed  Google Scholar 

  49. Shamshirsaz AA, Bekheimia RM, Kamgar M, Johnson AM, McFann K, Cadnapaphornchai M, et al. Autosomal-dominant polycystic kidney disease in infancy and childhood: progression and outcome. Kidney Int. 2005;68:2218–24.

    Article  PubMed  Google Scholar 

  50. Horie S. ADPKD: molecular characterization and quest for treatment. Clin Exp Nephrol. 2005;9:282–91.

    Article  PubMed  CAS  Google Scholar 

  51. Ravine D, Gibson RN, Walker RG, Sheffield LJ, Kincaid-Smith P, Danks DM. Evaluation of ultrasonographic diagnostic criteria for autosomal dominant polycystic disease 1. Lancet. 1994;343:824–7.

    Article  PubMed  CAS  Google Scholar 

  52. Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet. 2007;369:1287–301.

    Article  PubMed  Google Scholar 

  53. Demetriou K, Tziakouci C, Anninou K, Eleftheriou A, Koptides M, Nicolaou A, et al. Autosomal dominant polycystic kidney disease—type 2. Ultrasound, genetic and clinical correlations. Nephrol Dial Transpl. 2000;15:205–11.

    Article  CAS  Google Scholar 

  54. Nascimento AB, Mitchell DG, Zhang XM, Kamishima T, Parker L, Holland GA. Rapid MR imaging detection of renal cysts: age-based standards. Radiology. 2001;221:628–32.

    Article  PubMed  CAS  Google Scholar 

  55. Gattone VH 2nd, Wang X, Harris PC, Torres VE. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med. 2003;9:1323–6.

    Article  PubMed  CAS  Google Scholar 

  56. Ruggenenti P, Remuzzi A, Ondei P, Fasolini G, Antiga L, Ene-Iordache B, et al. Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int. 2005;68:206–16.

    Article  PubMed  CAS  Google Scholar 

  57. Rossetti S, Hopp K, Sikkink RA, Sundsbak JL, Lee YK, Kubly V, et al. Identification of gene mutations in autosomal dominant polycystic kidney disease through targeted resequencing. J Am Soc Nephrol. 2012;23:915–33.

    Article  PubMed  CAS  Google Scholar 

  58. Norby S, Schwartz M. Possible locus for polycystic kidney disease on chromosome 2. Lancet. 1990;336:323–4.

    Article  PubMed  CAS  Google Scholar 

  59. Grantham JJ, Chapman AB, Torres VE. Volume progression in autosomal dominant polycystic kidney disease: the major determining clinical outcomes. Clin J Am Soc Nephrol. 2006;1:148–57.

    Article  PubMed  Google Scholar 

  60. Chapman AB, Bost JE, Torres VE, Guay-Woodford L, Bae KT, Landsittel D, et al. Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2012;7:479–86.

    Article  PubMed  CAS  Google Scholar 

  61. Tokiwa S, Muto S, China T, Horie S. The relationship between renal volume and renal function in autosomal polycystic kidney disease. Clin Exp Nephrol. 2011;15:539–45.

    Article  PubMed  CAS  Google Scholar 

  62. Torres VE, Harris PC. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int. 2009;76:149–68.

    Article  PubMed  Google Scholar 

  63. Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH 2nd. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med. 2004;10:363–4.

    Article  PubMed  CAS  Google Scholar 

  64. Wang X, Wu Y, Ward CJ, Harris PC, Torres VE. Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008;19:102–8.

    Article  PubMed  CAS  Google Scholar 

  65. Torres VE. Role of vasopressin antagonists. Clin J Am Soc Nephrol. 2008;3:121218.

    Article  Google Scholar 

  66. Higashihara E, Torres VE, Chapman AB, Grantham JJ, Bae K, Watnick TJ, et al. Tolvaptan in autosomal dominant polycystic kidney disease: three years’ experience. Clin J Am Soc Nephrol. 2011;6:2499–507.

    Article  PubMed  CAS  Google Scholar 

  67. Torres VE, Meijer E, Bae KT, Chapman AB, Devuyst O, Gansevoort RT, et al. Rationale and design of the TEMPO (Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and its Outcomes) 3–4 Study. Am J Kidney Dis. 2011;57:692–9.

    Article  PubMed  CAS  Google Scholar 

  68. Hogan MC, Masyuk TV, Page LJ, Kubly VJ, Bergstralh EJ, Li X, et al. Randomized clinical trial of long-acting somatostatin for autosomal polycystic kidney disease and liver disease. J Am Soc Nephrol. 2010;21:1052–61.

    Article  PubMed  CAS  Google Scholar 

  69. Wahl PR, Serra AL, Le Hir M, Molle KD, Hall MN, Wuthrich RP. Inhibition of mTOR with sirolimus slows disease progression in Han:sPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transpl. 2006;21:598–604.

    Article  CAS  Google Scholar 

  70. Shillingford JM, Piontek KB, Germino GG, Weimbs T. Rapamycin ameliorates PKD resulting from conditional inactivation of pkd1. J Am Soc Nephrol. 2010;21:489–97.

    Article  PubMed  CAS  Google Scholar 

  71. Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cytogenesis in polycystic kidney disease. Proc Natl Acad Sci USA. 2006;103:5466–71.

    Article  PubMed  CAS  Google Scholar 

  72. Qian Q, Du H, King BF, Kumar S, Dean PG, Cosio FG, et al. Sirolimus reduces polycystic liver volume in ADPKD patients. J Am Soc Nephrol. 2008;19:631–8.

    Article  PubMed  CAS  Google Scholar 

  73. Perico N, Antiga L, Caroli A, Ruggenenti P, Fasolini G, Cafaro M, et al. Sirolimus therapy to halt the progression of ADPKD. J Am Soc Nephrol. 2010;21:1031–40.

    Article  PubMed  CAS  Google Scholar 

  74. Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363:820–9.

    Article  PubMed  CAS  Google Scholar 

  75. Chapman AB, Torres VE, Perrone RD, Steinman TI, Bae KT, Miller JP, et al. The HALT polycystic kidney disease trials: design and implementation. Clin J Am Soc Nephrol. 2010;5:102–9.

    Article  PubMed  Google Scholar 

  76. Chang MY, Kuok CM, Chen YC, Ryu SJ, Tian YC, Wu-Chou YH, et al. Comparison of intracerebral hemorrhage and subarachnoid hemorrhage in patients with autosomal-dominant polycystic kidney disease. Nephron Clin Pract. 2010;114:c158–64.

    Article  PubMed  Google Scholar 

  77. Jafar TH, Stark PC, Schmid CH, Strandgaard S, Kamper AL, Maschio G, et al. The effect of angiotensin-converting enzyme inhibitors on progression of advanced polycystic kidney disease. Kidney Int. 2005;67:265–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Mochizuki.

About this article

Cite this article

Mochizuki, T., Tsuchiya, K. & Nitta, K. Autosomal dominant polycystic kidney disease: recent advances in pathogenesis and potential therapies. Clin Exp Nephrol 17, 317–326 (2013). https://doi.org/10.1007/s10157-012-0741-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-012-0741-0

Keywords

Navigation