Skip to main content
Log in

The diagnostic potential of two exosome-derived circRNAs for papillary thyroid cancer

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

As a critical component of exosomes, circular RNAs (circRNAs) have shown great value in cancer diagnosis. This study aimed to identify circRNAs in exosomes for the diagnosis of PTC (papillary thyroid carcinoma).

Methods

We selected hsa_circ_0082002 and hsa_circ_0003863 based on circRNA microarray. The levels of exosomal hsa_circ_0082002 and hsa_circ_0003863 in the sera of healthy control (n = 68), benign thyroid tumors (n = 60), and PTC without and with Hashimoto’s thyroiditis (n = 164) were quantified by qPCR (quantitative polymerase chain reaction). Receiver operating characteristic analyses were conducted to evaluate the diagnostic sensitivity and specificity. Bioinformatics databases were used to predict the microRNAs and proteins binding with hsa_circ_0082002 and hsa_circ_0003863.

Results

The levels of exosomal hsa_circ_0082002 and hsa_circ_0003863 were positively associated and statistically increased in PTC compared to healthy and benign thyroid tumors. Intriguingly, higher levels of exosomal hsa_circ_0082002 and hsa_circ_0003863 were positively correlated with lymph node metastasis and vascular invasion in PTC. Further stability tests show that exosomal hsa_circ_0082002 and hsa_circ_0003863 could exist stably in sera treated by several freeze–thaw cycles at -20 °C and with a storage time shorter than 24 h at 4 °C. Furthermore, hsa_circ_0082002 and hsa_circ_0003863 were predicted to interact with microRNAs and proteins, suggesting that hsa_circ_0082002 and hsa_circ_0003863 might contribute to the occurrence and progression of PTC through interacting with microRNAs and RNA binding proteins.

Conclusion

Collectively, we identified two PTC-related circRNAs incorporated in exosomes and uncovered their potential as tumor markers to diagnose PTC, in particular, more aggressive PTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

PTC:

Papillary thyroid carcinoma

circRNA:

Circular RNA

ROC:

Receiver operator characteristic

AUC:

Area under the ROC curve

qPCR:

Quantitative polymerase chain reaction

FNAB:

Fine needle aspiration biopsy

PET:

Positron emission tomography

CT:

Computed tomography

miRNA:

MicroRNA

lncRNA:

Long non-coding RNA

References

  1. Ramia de Cap M (2021) Multifocal papillary thyroid carcinoma. Am J Clin Pathol 155(6):913. https://doi.org/10.1093/ajcp/aqab005

    Article  PubMed  Google Scholar 

  2. Feldkamp J, Führer D, Luster M et al (2016) Fine needle aspiration in the investigation of thyroid nodules. Dtsch Arztebl Int 113(20):353–359. https://doi.org/10.3238/arztebl.2016.0353

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu T, Tilak M, Awad S et al (2022) A literature review of factors associated with pain from fine needle aspiration biopsy of thyroid nodules. Endocr Pract 28(6):628–636. https://doi.org/10.1016/j.eprac.2022.03.007

    Article  PubMed  Google Scholar 

  4. Torréns JI, Burch HB (2001) Serum thyroglobulin measurement. Utility in clinical practice. Endocrinol Metab Clin North Am 30 (2):429–467. doi:https://doi.org/10.1016/s0889-8529(05)70194-8

  5. Algeciras-Schimnich A (2018) Thyroglobulin measurement in the management of patients with differentiated thyroid cancer. Crit Rev Clin Lab Sci 55(3):205–218. https://doi.org/10.1080/10408363.2018.1450830

    Article  CAS  PubMed  Google Scholar 

  6. Cho JS, Kim HK (2022) Thyroglobulin Levels as a Predictor of Papillary Cancer Recurrence After Thyroid Lobectomy. Anticancer Res 42(11):5619–5627. https://doi.org/10.21873/anticanres.16070

    Article  CAS  PubMed  Google Scholar 

  7. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science. https://doi.org/10.1126/science.aau6977

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mashouri L, Yousefi H, Aref AR et al (2019) Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 18(1):75. https://doi.org/10.1186/s12943-019-0991-5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dai J, Su Y, Zhong S et al (2020) Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 5(1):145. https://doi.org/10.1038/s41392-020-00261-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Liu J, Ma J et al (2019) Exosomal circRNAs: biogenesis, effect and application in human diseases. Mol Cancer 18(1):116. https://doi.org/10.1186/s12943-019-1041-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen L, Wang C, Sun H et al (2021) The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform 22(2):1706–1728. https://doi.org/10.1093/bib/bbaa001

    Article  CAS  PubMed  Google Scholar 

  12. Kristensen LS, Andersen MS, Stagsted LVW et al (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20(11):675–691. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Wang J, Wang C et al (2022) Deep learning models for disease-associated circRNA prediction: a review. Brief Bioinform. https://doi.org/10.1093/bib/bbac364

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen L, Shan G (2021) CircRNA in cancer: fundamental mechanism and clinical potential. Cancer Lett 505:49–57. https://doi.org/10.1016/j.canlet.2021.02.004

    Article  CAS  PubMed  Google Scholar 

  15. Panda AC (2018) Circular RNAs Act as miRNA Sponges. Adv Exp Med Biol 1087:67–79. https://doi.org/10.1007/978-981-13-1426-1_6

    Article  CAS  PubMed  Google Scholar 

  16. Huang A, Zheng H, Wu Z et al (2020) Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics 10(8):3503–3517. https://doi.org/10.7150/thno.42174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu G, Chang X, Kang Y, Zhao X, Tang X, Ma C, Fu S (2021) CircRNA: A novel potential strategy to treat thyroid cancer (Review). Int J Mol Med. https://doi.org/10.3892/ijmm.2021.5034

  18. Chen Y, Ma X, Lou C et al (2022) PLA2G10 incorporated in exosomes could be diagnostic and prognostic biomarker for non-small cell lung cancer. Clin Chim Acta 530:55–65. https://doi.org/10.1016/j.cca.2022.02.016

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Lou C, Ma X et al (2022) Serum exosomal hsa_circ_0069313 has a potential to diagnose more aggressive non-small cell lung cancer. Clin Biochem 102:56–64. https://doi.org/10.1016/j.clinbiochem.2022.01.005

    Article  CAS  PubMed  Google Scholar 

  20. Shen X, Yang Y, Chen Y et al (2022) Evaluation of EpCAM-specific exosomal lncRNAs as potential diagnostic biomarkers for lung cancer using droplet digital PCR. J Mol Med (Berl) 100(1):87–100. https://doi.org/10.1007/s00109-021-02145-4

    Article  CAS  PubMed  Google Scholar 

  21. Jiang B, Zhang J, Sun X et al (2022) Circulating exosomal hsa_circRNA_0039480 is highly expressed in gestational diabetes mellitus and may be served as a biomarker for early diagnosis of GDM. J Transl Med 20(1):5. https://doi.org/10.1186/s12967-021-03195-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhi F, Ding Y, Wang R et al (2021) Exosomal hsa_circ_0006859 is a potential biomarker for postmenopausal osteoporosis and enhances adipogenic versus osteogenic differentiation in human bone marrow mesenchymal stem cells by sponging miR-431-5p. Stem Cell Res Ther 12(1):157. https://doi.org/10.1186/s13287-021-02214-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu D, Li Y, Wang M et al (2022) Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer 21(1):56. https://doi.org/10.1186/s12943-022-01509-9

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang L, Chen Y, Liu N et al (2022) CircMET promotes tumor proliferation by enhancing CDKN2A mRNA decay and upregulating SMAD3. Mol Cancer 21(1):23. https://doi.org/10.1186/s12943-022-01497-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang XY, Zhang PF, Wei CY et al (2020) Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis. Mol Cancer 19(1):92. https://doi.org/10.1186/s12943-020-01213-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yao MD, Jiang Q, Ma Y et al (2022) Targeting circular RNA-MET for anti-angiogenesis treatment via inhibiting endothelial tip cell specialization. Mol Ther 30(3):1252–1264. https://doi.org/10.1016/j.ymthe.2022.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu J, Dai Z, Li M et al (2022) Circular RNA circMET contributes to tamoxifen resistance of breast cancer cells by targeting miR-204/AHR signaling. Biochem Biophys Res Commun 627:200–206. https://doi.org/10.1016/j.bbrc.2022.07.097

    Article  CAS  PubMed  Google Scholar 

  28. Pei X, Chen SW, Long X et al (2020) circMET promotes NSCLC cell proliferation, metastasis, and immune evasion by regulating the miR-145-5p/CXCL3 axis. Aging (Albany NY) 12(13):13038–13058. https://doi.org/10.18632/aging.103392

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Chen L, Liu T et al (2022) Genome-wide circular RNA (circRNA) and mRNA profiling identify a circMET-miR-410-3p regulatory motif for cell growth in colorectal cancer. Genomics 114(1):351–360. https://doi.org/10.1016/j.ygeno.2021.11.038

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Junming Guo for providing us with the qPCR instrument.

Funding

This study is supported by the Natural Science Foundation of Ningbo (2023J322, 2023J077, and 2021J313); the Research Foundation of Ningbo No.2 Hospital (2022HMK40); the Young Technical Backbone Talent of Health in Ningbo; the Zhu Xiushan Talent Award Fund of Ningbo NO.2 Hospital (2021HMYQ06); the Project of NINGBO Leading Medical & Health Discipline (2022-F18).

Author information

Authors and Affiliations

Authors

Contributions

Study design and supervision: LD, XW, XM. Development of methodology: LD, WH, HJ. Acquisition of data (acquired and managed patients): LD, YW, QL. Analysis and interpretation of data (e.g., statistical analysis, biostatistics): LD. Writing, review, and/or revision of the manuscript: LD, XW, XM.

Corresponding authors

Correspondence to Xianjiang Wu or Xiaodan Meng.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethics approval and consent to participate

This study was performed following the Declaration of Helsinki. Written informed consent was obtained from all patients, and the study was approved by the ethics committee (the Clinical Research Ethics Committee of Ningbo No.2 Hospital) with the number of. YJ-NBEY-KY-2021-181-01.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Hu, W., Jiang, H. et al. The diagnostic potential of two exosome-derived circRNAs for papillary thyroid cancer. Int J Clin Oncol 28, 1461–1474 (2023). https://doi.org/10.1007/s10147-023-02400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-023-02400-3

Keywords

Navigation