Skip to main content

Advertisement

Log in

Robotic systems in interventional oncology: a narrative review of the current status

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Interventional oncology offers minimally invasive treatments for malignant tumors for curative and palliative purposes based on the percutaneous insertion of needles or catheters into the target location under image guidance. Robotic systems have been gaining increasing attention as tools that provide potential advantages for image-guided interventions. Among the robotic systems developed for intervention, those relevant to the oncology field are mainly those for guiding or driving the needles in non-vascular interventional procedures such as biopsy and tumor ablation. Needle-guiding robots support planning the needle path and align the needle robotically according to the planned trajectory, which is combined with subsequent manual needle insertion by the physician through the needle guide. Needle-driving robots can advance the needle robotically after determining its orientation. Although a wide variety of robotic systems have been developed, only a limited number of these systems have reached the clinical phase or commercialization thus far. The results of previous studies suggest that such interventional robots have the potential to increase the accuracy of needle placement, facilitate out-of-plane needle insertion, decrease the learning curve, and reduce radiation exposure. On the other hand, increased complexity and costs may be a concern when using robotic systems compared with conventional manual procedures. Further data should be collected to comprehensively assess the value of robotic systems in interventional oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adam A, Kenny LM (2015) Interventional oncology in multidisciplinary cancer treatment in the 21(st) century. Nat Rev Clin Oncol 12:105–113

    Article  PubMed  Google Scholar 

  2. Putzer D, Schullian P, Braunwarth E et al (2018) Integrating interventional oncology in the treatment of liver tumors. Eur Surg 50:117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hasegawa T, Chatani S, Sato Y et al (2021) Percutaneous image-guided needle biopsy of musculoskeletal tumors: technical tips. Interv Radiol 6:75–82

    Article  Google Scholar 

  4. Iguchi T, Matsui Y, Tomita K et al (2021) Computed tomography-guided core needle biopsy for renal tumors: a review. Interv Radiol 6:69–74

    Article  Google Scholar 

  5. Matsui Y, Hiraki T, Sakurai J et al (2022) Percutaneous needle biopsy under 1.2 Tesla open MRI guidance. Jpn J Radiol 40:430–438

    Article  PubMed  Google Scholar 

  6. Park R, Lee SM, Kim S et al (2022) Learning curve for CT-guided percutaneous transthoracic needle biopsy: retrospective evaluation among 17 thoracic imaging fellows at a tertiary referral hospital. AJR Am J Roentgenol 218:112–123

    Article  PubMed  Google Scholar 

  7. Nakatani M, Kariya S, Ono Y et al (2022) Radiation exposure and protection in computed tomography fluoroscopy. Interv Radiol 7:49–53

    Article  Google Scholar 

  8. Seki Y, Miyazaki M, Fukushima Y et al (2020) Radiation exposure of interventional radiologists during computed tomography fluoroscopy-guided percutaneous cryoablation. Interv Radiol 5:67–73

    Article  Google Scholar 

  9. Matsui Y, Hiraki T, Gobara H et al (2016) Radiation exposure of interventional radiologists during computed tomography fluoroscopy-guided renal cryoablation and lung radiofrequency ablation: direct measurement in a clinical setting. Cardiovasc Intervent Radiol 39:894–901

    Article  PubMed  Google Scholar 

  10. Unger M, Berger J, Melzer A (2021) Robot-assisted image-guided interventions. Front Robot AI 8:664622

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kwoh YS, Hou J, Jonckheere EA et al (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35:153–160

    Article  CAS  PubMed  Google Scholar 

  12. Tacher V, de Baere T (2020) Robotic assistance in interventional radiology: dream or reality? Eur Radiol 30:925–926

    Article  PubMed  Google Scholar 

  13. Christou AS, Amalou A, Lee H et al (2021) Image-guided robotics for standardized and automated biopsy and ablation. Semin Intervent Radiol 38:565–575

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cleary K, Melzer A, Watson V et al (2006) Interventional robotic systems: applications and technology state-of-the-art. Minim Invasive Ther Allied Technol 15:101–113

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kettenbach J, Kronreif G (2015) Robotic systems for percutaneous needle-guided interventions. Minim Invasive Ther Allied Technol 24:45–53

    Article  PubMed  Google Scholar 

  16. Arnolli MM, Hanumara NC, Franken M et al (2015) An overview of systems for CT- and MRI-guided percutaneous needle placement in the thorax and abdomen. Int J Med Robot 11:458–475

    Article  PubMed  Google Scholar 

  17. Rueda MA, Riga CT, Hamady MS (2018) Robotics in interventional radiology: past, present, and future. Arab J Interv Radiol 2:56–63

    Article  Google Scholar 

  18. Kulkarni P, Sikander S, Biswas P et al (2019) Review of robotic needle guide systems for percutaneous intervention. Ann Biomed Eng 47:2489–2513

    Article  PubMed  Google Scholar 

  19. Fichtinger G, Troccaz J, Haidegger T (2022) Image-guided interventional robotics: lost in translation? Proc IEEE 110:932–950

    Article  Google Scholar 

  20. Zangos S, Melzer A, Eichler K et al (2011) MR-compatible assistance system for biopsy in a high-field-strength system: initial results in patients with suspicious prostate lesions. Radiology 259:903–910

    Article  PubMed  Google Scholar 

  21. Melzer A, Gutmann B, Remmele T et al (2008) INNOMOTION for percutaneous image-guided interventions: principles and evaluation of this MR- and CT-compatible robotic system. IEEE Eng Med Biol Mag 27:66–73

    Article  PubMed  Google Scholar 

  22. Kettenbach J, Kubin K, Stadler A et al (2008) Pneumatically driven robotic system for MR-guided biopsie, drainage and tumorablation: first clinical experiences. J Vasc Interv Radiol 19:S60

    Article  Google Scholar 

  23. Zangos S, Herzog C, Eichler K et al (2007) MR-compatible assistance system for punction in a high-field system: device and feasibility of transgluteal biopsies of the prostate gland. Eur Radiol 17:1118–1124

    Article  PubMed  Google Scholar 

  24. Schulz B, Eichler K, Siebenhandl P et al (2013) Accuracy and speed of robotic assisted needle interventions using a modern cone beam computed tomography intervention suite: a phantom study. Eur Radiol 23:198–204

    Article  PubMed  Google Scholar 

  25. Kettenbach J, Kara L, Toporek G et al (2014) A robotic needle-positioning and guidance system for CT-guided puncture: ex vivo results. Minim Invasive Ther Allied Technol 23:271–278

    Article  PubMed  Google Scholar 

  26. Martinez RM, Ptacek W, Schweitzer W et al (2014) CT-guided, minimally invasive, postmortem needle biopsy using the B-Rob II needle-positioning robot. J Forensic Sci 59:517–521

    Article  PubMed  Google Scholar 

  27. Kettenbach J, Kronreif G, Figl M et al (2005) Robot-assisted biopsy using computed tomography-guidance: initial results from in vitro tests. Invest Radiol 40:219–228

    Article  PubMed  Google Scholar 

  28. Kettenbach J, Kronreif G, Figl M et al (2005) Robot-assisted biopsy using ultrasound guidance: initial results from in vitro tests. Eur Radiol 15:765–771

    Article  PubMed  Google Scholar 

  29. MICROMATETM Case Reports. https://interventional-systems.showpad.com/share/8nPSChuvOvnUwLsqh10dB. Accessed Jan 2023

  30. Groetz S, Wilhelm K, Willinek W et al (2016) A new robotic assistance system for percutaneous CT-guided punctures: initial experience. Minim Invasive Ther Allied Technol 25:79–85

    Article  PubMed  Google Scholar 

  31. Engstrand J, Toporek G, Harbut P et al (2017) Stereotactic CT-guided percutaneous microwave ablation of liver tumors with the use of high-frequency jet ventilation: an accuracy and procedural safety study. AJR Am J Roentgenol 208:193–200

    Article  PubMed  Google Scholar 

  32. Abdullah BJJ, Yeong CH, Goh KL et al (2014) Robot-assisted radiofrequency ablation of primary and secondary liver tumours: early experience. Eur Radiol 24:79–85

    Article  PubMed  Google Scholar 

  33. Koethe Y, Xu S, Velusamy G et al (2014) Accuracy and efficacy of percutaneous biopsy and ablation using robotic assistance under computed tomography guidance: a phantom study. Eur Radiol 24:723–730

    Article  PubMed  Google Scholar 

  34. Abdullah BJJ, Yeong CH, Goh KL et al (2015) Robotic-assisted thermal ablation of liver tumours. Eur Radiol 25:246–257

    Article  PubMed  Google Scholar 

  35. Mbalisike EC, Vogl TJ, Zangos S et al (2015) Image-guided microwave thermoablation of hepatic tumours using novel robotic guidance: an early experience. Eur Radiol 25:454–462

    Article  PubMed  Google Scholar 

  36. Cornelis F, Takaki H, Laskhmanan M et al (2015) Comparison of CT fluoroscopy-guided manual and CT-guided robotic positioning system for in vivo needle placements in swine liver. Cardiovasc Intervent Radiol 38:1252–1260

    Article  CAS  PubMed  Google Scholar 

  37. Smakic A, Rathmann N, Kostrzewa M et al (2018) Performance of a robotic assistance device in computed tomography-guided percutaneous diagnostic and therapeutic procedures. Cardiovasc Intervent Radiol 41:639–644

    Article  PubMed  Google Scholar 

  38. Fong AJ, Stewart CL, Lafaro K et al (2021) Robotic assistance for quick and accurate image-guided needle placement. Update Surg 73:1197–1201

    Article  Google Scholar 

  39. Muntener M, Patriciu A, Petrisor D et al (2006) Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement. Urology 68:1313–1317

    Article  PubMed  Google Scholar 

  40. Stoianovici D, Song D, Petrisor D et al (2007) ‘MRI Stealth’ robot for prostate interventions. Minim Invasive Ther Allied Technol 16:241–248

    Article  PubMed  PubMed Central  Google Scholar 

  41. Patriciu A, Petrisor D, Muntener M et al (2007) Automatic brachytherapy seed placement under MRI guidance. IEEE Trans Biomed Eng 54:1499–1506

    Article  PubMed  PubMed Central  Google Scholar 

  42. Muntener M, Patriciu A, Petrisor D et al (2008) Transperineal prostate intervention: robot for fully automated MR imaging–system description and proof of principle in a canine model. Radiology 247:543–549

    Article  PubMed  Google Scholar 

  43. Stoianovici D, Kim C, Petrisor D et al (2017) MR safe robot, FDA clearance, safety and feasibility prostate biopsy clinical trial. IEEE ASME Trans Mechatron 22:115–126

    Article  PubMed  Google Scholar 

  44. Arnolli MM, Buijze M, Franken M et al (2018) System for CT-guided needle placement in the thorax and abdomen: a design for clinical acceptability, applicability and usability. Int J Med Robot 14:e1877

    Article  Google Scholar 

  45. Arnolli MM, Buijze M, Franken M et al (2018) A precision system for computed tomography-guided needle placement in the thorax and abdomen—technical design and performance analysis. J Med Device 12:021003

    Article  Google Scholar 

  46. Heerink WJ, Ruiter SJS, Pennings JP et al (2019) Robotic versus freehand needle positioning in CT-guided ablation of liver tumors: a randomized controlled trial. Radiology 290:826–832

    Article  PubMed  Google Scholar 

  47. de Baere T, Roux C, Noel G et al (2022) Robotic assistance for percutaneous needle insertion in the kidney: preclinical proof on a swine animal model. Eur Radiol Exp 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  48. de Baère T, Roux C, Deschamps F et al (2022) Evaluation of a new CT-guided robotic system for percutaneous needle insertion for thermal ablation of liver tumors: a prospective pilot study. Cardiovasc Intervent Radiol 45:1701–1709

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guiu B, De Baère T, Noel G et al (2021) Feasibility, safety and accuracy of a CT-guided robotic assistance for percutaneous needle placement in a swine liver model. Sci Rep 11:5218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Solomon SB, Patriciu A, Bohlman ME et al (2002) Robotically driven interventions: a method of using CT fluoroscopy without radiation exposure to the physician. Radiology 225:277–282

    Article  PubMed  Google Scholar 

  51. Stoianovici D, Cleary K, Patriciu A et al (2003) AcuBot: a robot for radiological interventions. IEEE Trans Robot Automat 19:927–930

    Article  Google Scholar 

  52. Cleary K, Watson V, Lindisch D et al (2005) Precision placement of instruments for minimally invasive procedures using a “needle driver” robot. Int J Med Robot 1:40–47

    Article  CAS  PubMed  Google Scholar 

  53. Patriciu A, Awad M, Solomon SB et al (2005) Robotic assisted radio-frequency ablation of liver tumors–randomized patient study. Med Image Comput Comput Assist Interv 8:526–533

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pollock R, Mozer P, Guzzo TJ et al (2010) Prospects in percutaneous ablative targeting: comparison of a computer-assisted navigation system and the AcuBot robotic system. J Endourol 24:1269–1272

    Article  PubMed  PubMed Central  Google Scholar 

  55. Stoianovici D, Whitcomb LL, Anderson JH et al (1998) A modular surgical robotic system for image guided percutaneous procedures. In: Wells WM, Colchester A, Delp S (eds) Medical image computing and computer-assisted intervention—MICCAI’98. MICCAI 1998. Lecture notes in computer science, vol 1496. Springer, Berlin, pp 404–410

    Google Scholar 

  56. Hiraki T, Kamegawa T, Matsuno T et al (2017) Robotically driven CT-guided needle insertion: preliminary results in phantom and animal experiments. Radiology 285:454–461

    Article  PubMed  Google Scholar 

  57. Hiraki T, Matsuno T, Kamegawa T et al (2018) Robotic insertion of various ablation needles under computed tomography guidance: accuracy in animal experiments. Eur J Radiol 105:162–167

    Article  PubMed  Google Scholar 

  58. Hiraki T, Kamegawa T, Matsuno T et al (2018) Zerobot®: a remote-controlled robot for needle insertion in CT-guided interventional radiology developed at Okayama university. Acta Med Okayama 72:539–546

    PubMed  Google Scholar 

  59. Hiraki T, Kamegawa T, Matsuno T et al (2020) Robotic needle insertion during computed tomography fluoroscopy-guided biopsy: prospective first-in-human feasibility trial. Eur Radiol 30:927–933

    Article  PubMed  Google Scholar 

  60. Komaki T, Hiraki T, Kamegawa T et al (2020) Robotic CT-guided out-of-plane needle insertion: comparison of angle accuracy with manual insertion in phantom and measurement of distance accuracy in animals. Eur Radiol 30:1342–1349

    Article  PubMed  Google Scholar 

  61. Ben-David E, Shochat M, Roth I et al (2018) Evaluation of a CT-guided robotic system for precise percutaneous needle insertion. J Vasc Interv Radiol 29:1440–1446

    Article  PubMed  Google Scholar 

  62. Levy S, Goldberg SN, Roth I et al (2021) Clinical evaluation of a robotic system for precise CT-guided percutaneous procedures. Abdom Radiol 46:5007–5016

    Article  Google Scholar 

  63. Yang K, Ganguli S, DeLorenzo MC et al (2018) Procedure-specific CT dose and utilization factors for CT-guided interventional procedures. Radiology 289:150–157

    Article  PubMed  Google Scholar 

  64. Kloeckner R, dos Santos DP, Schneider J et al (2013) Radiation exposure in CT-guided interventions. Eur J Radiol 82:2253–2257

    Article  PubMed  Google Scholar 

  65. Barba P, Stramiello J, Funk EK et al (2022) Remote telesurgery in humans: a systematic review. Surg Endosc 36:2771–2777

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhou Y, Thiruvalluvan K, Krzeminski L et al (2013) CT-guided robotic needle biopsy of lung nodules with respiratory motion - experimental system and preliminary test. Int J Med Robot 9:317–330

    Article  PubMed  Google Scholar 

  67. Wei L, Jiang S, Yang Z et al (2020) A CT-guided robotic needle puncture method for lung tumours with respiratory motion. Phys Med 73:48–56

    Article  PubMed  Google Scholar 

Download references

Funding

This study was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Matsui.

Ethics declarations

Conflicts of interest

T.H. and Y.M. received a grant from Cannon Medical Systems for work related to this study. Other authors declare that they have no conflict of interest.

Ethical approval

This study did not require ethical approval because it was a review of published articles and did not directly involve human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsui, Y., Kamegawa, T., Tomita, K. et al. Robotic systems in interventional oncology: a narrative review of the current status. Int J Clin Oncol 29, 81–88 (2024). https://doi.org/10.1007/s10147-023-02344-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-023-02344-8

Keywords

Navigation