Skip to main content

Advertisement

Log in

High-intermediate risk endometrial cancer: moving toward a molecularly based risk assessment profile

  • Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

In the USA, endometrial cancer (EMCA) incidence is increasing as the risk factors of obesity, diabetes, and hypertension become more prevalent. Although most EMCA is detected at an early stage and surgical intervention is curative, a subset of patients termed ‘high-intermediate risk’ (H-IR) experience an increased rate of recurrence. Unfortunately, adjuvant therapies in patients with H-IR EMCA have yet to increase overall survival. Historically, stratification of these patients from their low-risk counterparts incorporated clinical and pathologic findings. However, due to developments in molecular testing and genomic sequencing, tumor biomarkers are now being incorporated into the risk-assessment criteria in the hope of finding molecular profile(s) that could highlight treatment regimens that will increase patient survival. Since modern research aims to accurately identify patients with a higher risk of recurrence and develop effective interventions to improve patient survival, these molecular-based analyses could allow for an enhanced understanding of a patient’s true risk of recurrence to facilitate the rise of personalized medicine. This review summarizes key clinical trials and recent advances in molecular and genomic profiles that have influenced current treatment regimens for patients with H-IR EMCA and laid the foundation for subsequent research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Cancer Society: Facts & Figures 2020 Atlanta, GA2020 https://www.cancer.org/cancer/endometrial-cancer/about/key-statistics.html#references

  2. ACOG Committee Opinion No (2009) 440: The Role of Transvaginal Ultrasonography in the Evaluation of Postmenopausal Bleeding. Obstet Gynecol 114(2 Pt 1):409–411

    Google Scholar 

  3. Braun MM, Overbeek-Wager EA, Grumbo RJ (2016) Diagnosis and Management of Endometrial Cancer. Am Fam Physician 93(6):468–474

    Google Scholar 

  4. Gottwald L, Pluta P, Piekarski J et al (2010) Long-term survival of endometrioid endometrial cancer patients. Arch Med Sci 6(6):937–944

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ayhan A, Taskiran C, Celik C et al (2002) Is there a survival benefit to adjuvant radiotherapy in high-risk surgical stage I endometrial cancer? Gynecol Oncol 86(3):259–263

    Article  PubMed  Google Scholar 

  6. Bokhman JV (1983) Two pathogenetic types of endometrial carcinoma. Gynecol Oncol 15(1):10–17

    Article  CAS  PubMed  Google Scholar 

  7. Setiawan VW, Yang HP, Pike MC et al (2013) Type I and II endometrial cancers: have they different risk factors? J Clin Oncol Off J Am Soc Clin Oncol 31(20):2607–2618

    Article  Google Scholar 

  8. Nakamura M, Obata T, Daikoku T et al (2019) The association and significance of p53 in gynecologic cancers: the potential of targeted therapy. Int J Mol Sci 20(5482):1–16

    CAS  Google Scholar 

  9. Srikantia N, Rekha B, Rajeev AG et al (2009) Endometrioid endometrial adenocarcinoma in a premenopausal woman with multiple organ metastases. Indian J Med Paediatr Oncol 30(2):80–83

    Article  PubMed  PubMed Central  Google Scholar 

  10. Creutzberg CL, van Putten WL, Koper PC et al (2000) Surgery and postoperative radiotherapy versus surgery alone for patients with stage-1 endometrial carcinoma: multicentre randomised trial. PORTEC Study Group. Post-Operative Radiation Therapy in Endometrial Carcinoma. Lancet 355(9213):1404–1411

    Article  CAS  PubMed  Google Scholar 

  11. Keys HM, Roberts JA, Brunetto VL et al (2004) A phase III trial of surgery with or without adjunctive external pelvic radiation therapy in intermediate risk endometrial adenocarcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 92(3):744–751

    Article  PubMed  Google Scholar 

  12. Kong A, Johnson N, Kitchener HC et al (2012) Adjuvant radiotherapy for stage I endometrial cancer. Cochrane Database Syst Rev 2012(4):Cd003916

    PubMed Central  Google Scholar 

  13. Creutzberg CL, Nout RA, Lybeert ML et al (2011) Fifteen-year radiotherapy outcomes of the randomized PORTEC-1 trial for endometrial carcinoma. Int J Radiat Oncol Biol Phys 81(4):e631–e638

    Article  PubMed  Google Scholar 

  14. Randall ME, Filiaci V, McMeekin DS et al (2019) Phase III trial: adjuvant pelvic radiation therapy versus vaginal brachytherapy plus paclitaxel/carboplatin in high-intermediate and high-risk early-stage endometrial cancer. J Clin Oncol 37(21):1810–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nout RA, Smit VT, Putter H et al (2010) Vaginal brachytherapy versus pelvic external beam radiotherapy for patients with endometrial cancer of high-intermediate risk (PORTEC-2): an open-label, non-inferiority, randomised trial. Lancet 375(9717):816–823

    Article  CAS  PubMed  Google Scholar 

  16. Chin L, Andersen JN, Futreal PA (2011) Cancer genomics: from discovery science to personalized medicine. Nat Med 17(3):297–303

    Article  CAS  PubMed  Google Scholar 

  17. Tomczak K, Czerwińska P, Wiznerowicz M (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Poznan, Poland) 19(1A):A68–A77

    Google Scholar 

  18. Kanopiene D, Vidugiriene J, Valuckas KP et al (2015) Endometrial cancer and microsatellite instability status. Open Med (Wars) 10(1):70–76

    CAS  Google Scholar 

  19. Jasperson KW, Tuohy TM, Neklason DW et al (2010) Hereditary and familial colon cancer. Gastroenterology 138(6):2044–2058

    Article  CAS  Google Scholar 

  20. Lynch HT, Lynch PM, Lanspa SJ et al (2009) Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet 76(1):1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cohn DE, Frankel WL, Resnick KE et al (2006) Improved survival with an intact DNA mismatch repair system in endometrial cancer. Obstet Gynecol 108(5):1208–1215

    Article  CAS  PubMed  Google Scholar 

  22. Gargiulo P, Della Pepa C, Berardi S et al (2016) Tumor genotype and immune microenvironment in POLE-ultramutated and MSI-hypermutated endometrial cancers: new candidates for checkpoint blockade immunotherapy? Cancer Treat Rev 48:61–68

    Article  CAS  PubMed  Google Scholar 

  23. Levine DA, Getz G, Gabriel SB et al (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497(7447):67–73

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wortman BG, Nout RA, Bosse T et al (2019) Selecting adjuvant treatment for endometrial carcinoma using molecular risk factors. Curr Oncol Rep 21(9):83

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stelloo E, Nout RA, Osse EM et al (2016) Improved risk assessment by integrating molecular and clinicopathological factors in early-stage endometrial cancer-combined analysis of the PORTEC cohorts. Clin Cancer Res 22(16):4215–4224

    Article  CAS  PubMed  Google Scholar 

  26. de Jonge MM, Auguste A, van Wijk LM et al (2019) Frequent homologous recombination deficiency in high-grade endometrial carcinomas. Clin Cancer Res 25(3):1087–1097

    Article  PubMed  Google Scholar 

  27. Kristeleit RS, Miller RE, Kohn EC (2016) Gynecologic cancers: emerging novel strategies for targeting DNA repair deficiency. Am Soc Clin Oncol Educ Book 35:e259–e268

    Article  PubMed  Google Scholar 

  28. Yamashita H, Nakayama K, Ishikawa M et al (2018) Microsatellite instability is a biomarker for immune checkpoint inhibitors in endometrial cancer. Oncotarget 9(5):5652–5664

    Article  PubMed  Google Scholar 

  29. Marcus L, Lemery SJ, Keegan P et al (2019) FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res 25(13):3753–3758

    Article  CAS  PubMed  Google Scholar 

  30. Frenel JS, Le Tourneau C, O’Neil B et al (2017) Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: results from the phase Ib KEYNOTE-028 Trial. J Clin Oncol 35(36):4035–4041

    Article  CAS  PubMed  Google Scholar 

  31. Djordjevic B, Broaddus RR (2011) Selected topics in the molecular pathology of endometrial carcinoma. Surg Pathol Clin 4(1):131–147

    Article  PubMed  Google Scholar 

  32. Mutter GL, Lin MC, Fitzgerald JT et al (2000) Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst 92(11):924–930

    Article  CAS  PubMed  Google Scholar 

  33. Nagase S, Yamakawa H, Sato S et al (1997) Identification of a 790-kilobase region of common allelic loss in chromosome 10q25-q26 in human endometrial cancer. Cancer Res 57(9):1630–1633

    CAS  PubMed  Google Scholar 

  34. Peiffer SL, Herzog TJ, Tribune DJ et al (1995) Allelic loss of sequences from the long arm of chromosome 10 and replication errors in endometrial cancers. Cancer Res 55(9):1922–1926

    CAS  PubMed  Google Scholar 

  35. Risinger JI, Hayes K, Maxwell GL et al (1998) PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Clin Cancer Res 4(12):3005–3010

    CAS  PubMed  Google Scholar 

  36. Akiyama-Abe A, Minaguchi T, Nakamura Y et al (2013) Loss of PTEN expression is an independent predictor of favourable survival in endometrial carcinomas. Br J Cancer 109(6):1703–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Church D, Midgley R, Kerr D (2012) Biomarkers in early-stage colorectal cancer: ready for prime time? Dig Dis 30(Suppl 2):27–33

    Article  PubMed  Google Scholar 

  38. Lee LJ, Ratner E, Uduman M et al (2014) The KRAS-variant and miRNA expression in RTOG endometrial cancer clinical trials 9708 and 9905. PLoS One 9(4):e94167

    Article  PubMed  PubMed Central  Google Scholar 

  39. Llobet D, Pallares J, Yeramian A et al (2009) Molecular pathology of endometrial carcinoma: practical aspects from the diagnostic and therapeutic viewpoints. J Clin Pathol 62(9):777–785

    Article  CAS  PubMed  Google Scholar 

  40. Banno K, Yanokura M, Iida M et al (2014) Carcinogenic mechanisms of endometrial cancer: involvement of genetics and epigenetics. J Obstet Gynaecol Res 40(8):1957–1967

    Article  CAS  PubMed  Google Scholar 

  41. Ring KL, Yates MS, Schmandt R et al (2017) Endometrial cancers with activating KRas mutations have activated estrogen signaling and paradoxical response to MEK inhibition. Int J Gynecol Cancer 27(5):854–862

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ninomiya Y, Kato K, Takahashi A et al (2004) K-Ras and H-Ras activation promote distinct consequences on endometrial cell survival. Cancer Res 64(8):2759–2765

    Article  CAS  PubMed  Google Scholar 

  43. Alexander-Sefre F, Salvesen HB, Ryan A et al (2003) Molecular assessment of depth of myometrial invasion in stage I endometrial cancer: a model based on K-ras mutation analysis. Gynecol Oncol 91(1):218–225

    Article  CAS  PubMed  Google Scholar 

  44. Takeda T, Banno K, Okawa R et al (2016) ARID1A gene mutation in ovarian and endometrial cancers (Review). Oncol Rep 35(2):607–613

    Article  CAS  PubMed  Google Scholar 

  45. Jones S, Wang TL, Shih Ie M et al (2010) Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330(6001):228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Y, Hoang L, Ji JX et al (2020) SWI/SNF complex mutations in gynecologic cancers: molecular mechanisms and models. Annu Rev Pathol 15:467–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Toumpeki C, Liberis A, Tsirkas I et al (2019) The role of ARID1A in endometrial cancer and the molecular pathways associated with pathogenesis and cancer progression. In Vivo 33(3):659–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim G, Kurnit KC, Djordjevic B et al (2018) Nuclear beta-catenin localization and mutation of the CTNNB1 gene: a context-dependent association. Mod Pathol 31(10):1553–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu C, Li Y, Semenov M et al (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108(6):837–847

    Article  CAS  PubMed  Google Scholar 

  50. Kurnit KC, Kim GN, Fellman BM et al (2017) CTNNB1 (beta-catenin) mutation identifies low grade, early stage endometrial cancer patients at increased risk of recurrence. Mod Pathol 30(7):1032–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hierro C, Rodon J, Tabernero J (2015) Fibroblast growth factor (FGF) receptor/FGF inhibitors: novel targets and strategies for optimization of response of solid tumors. Semin Oncol 42(6):801–819

    Article  CAS  PubMed  Google Scholar 

  52. Gatius S, Velasco A, Azueta A et al (2011) FGFR2 alterations in endometrial carcinoma. Mod Pathol 24(11):1500–1510

    Article  CAS  PubMed  Google Scholar 

  53. Pollock PM, Gartside MG, Dejeza LC et al (2007) Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene 26(50):7158–7162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Byron SA, Gartside M, Powell MA et al (2012) FGFR2 point mutations in 466 endometrioid endometrial tumors: relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features. PLoS One 7(2):e30801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Byron SA, Gartside MG, Wellens CL et al (2008) Inhibition of activated fibroblast growth factor receptor 2 in endometrial cancer cells induces cell death despite PTEN abrogation. Cancer Res 68(17):6902–6907

    Article  CAS  PubMed  Google Scholar 

  56. Samarnthai N, Hall K, Yeh IT (2010) Molecular profiling of endometrial malignancies. Obstet Gynecol Int 2010:162363

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding was provided by the Foundation for Women's Cancer (Wilma Williams Education, Clinical Research Award for Endometrial Cancer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca C. Arend.

Ethics declarations

Conflict of interest

No author has any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kako, T.D., Kamal, M.Z., Dholakia, J. et al. High-intermediate risk endometrial cancer: moving toward a molecularly based risk assessment profile. Int J Clin Oncol 27, 323–331 (2022). https://doi.org/10.1007/s10147-021-02089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-021-02089-2

Keywords

Navigation