Skip to main content
Log in

Risk of meningitis after posterior fossa decompression with duraplasty using different graft types in patients with Chiari malformation type I and syringomyelia: a systematic review and meta-analysis

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Several complications have been reported after the use of grafts for duraplasty following posterior fossa decompression for the treatment of Chiari malformation type I. This study aims to investigate the rate of meningitis after posterior fossa decompression using different types of grafts in patients with Chiari malformation type I and associated syringomyelia. The search was conducted using multiple databases, including PubMed, Scopus, Web of Science, and Embase. Data on the rate of meningitis, syrinx change, and rate of reoperation were extracted and investigated. Quality of evidence was assessed using the Newcastle–Ottawa scale. Nineteen studies were included in the final meta-analysis, encompassing 1404 patients and investigating autografts, synthetic grafts, allografts, and xenografts (bovine collagen, bovine pericardium, and pig pericardium). Autografts were associated with the lowest rate of meningitis (1%) compared to allografts, synthetic grafts, and xenografts (2%, 5%, and 8% respectively). Autografts were also associated with the lowest rate of reoperation followed by xenografts, allografts, and synthetic grafts (4%, 5%, 9%, and 10% respectively). On the other hand, allografts were associated with the highest rate of syrinx improvement (83%) in comparison to autografts and synthetic grafts (77%, and 79% respectively). Autografts were associated with the lowest meningitis, reoperation, and syrinx improvement rates. Furthermore, synthetic grafts were associated with the highest reoperation and xenografts with the highest rate of meningitis, whereas allografts were associated with the best syrinx improvement rate and second-best meningitis rate. Future studies comparing autografts and allografts are warranted to determine which carries the best clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data is available from the corresponding author upon reasonable request.

References

  1. Hidalgo JA, Tork CA, Varacallo M (2022) Arnold Chiari malformation. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.

  2. Fernández AA, Guerrero AI, Martínez MI, Vázquez ME, Fernández JB, Chesai Octavio E et al (2009) Malformations of the craniocervical junction (Chiari type I and syringomyelia: classification, diagnosis and treatment). BMC Musculoskelet Disord 10 Suppl 1(Suppl 1):S1. https://doi.org/10.1186/1471-2474-10-S1-S1

    Article  PubMed  Google Scholar 

  3. Tavallaii A, Keykhosravi E, Rezaee H, Abouei Mehrizi MA, Ghorbanpour A, Shahriari A (2021) Outcomes of dura-splitting technique compared to conventional duraplasty technique in the treatment of adult Chiari I malformation: a systematic review and meta-analysis. Neurosurg Rev 44(3):1313–1329. https://doi.org/10.1007/s10143-020-01334-y

    Article  PubMed  Google Scholar 

  4. Panigrahi M, Reddy BP, Reddy AK, Reddy JJM (2004) CSF flow study in Chiari I malformation. Child’s Nerv Syst 20(5):336–340. https://doi.org/10.1007/s00381-003-0881-3

    Article  CAS  Google Scholar 

  5. Milhorat TH, Johnson WD, Miller JI, Bergland RM, Hollenberg-Sher J (1992) Surgical treatment of syringomyelia based on magnetic resonance imaging criteria. Neurosurgery 31(2):231–44. https://doi.org/10.1227/00006123-199208000-00008 (discussion 44-5)

    Article  CAS  PubMed  Google Scholar 

  6. Siasios J, Kapsalaki EZ, Fountas KN (2012) Surgical management of patients with Chiari I malformation. Int J Pediatr 2012:640127. https://doi.org/10.1155/2012/640127

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lin W, Duan G, Xie J, Shao J, Wang Z, Jiao B (2018) Comparison of Results Between Posterior Fossa Decompression with and without Duraplasty for the Surgical Treatment of Chiari Malformation Type I: A Systematic Review and Meta-Analysis. World Neurosurg 110:460–74.e5. https://doi.org/10.1016/j.wneu.2017.10.161

    Article  PubMed  Google Scholar 

  8. Tubbs RS, Smyth MD, Wellons JC, Oakes WJ (2004) Arachnoid veils and the Chiari I malformation. J Neursurg Pediatr 100(5):465–467. https://doi.org/10.3171/ped.2004.100.5.0465

    Article  Google Scholar 

  9. Park JK, Gleason PL, Madsen JR, Goumnerova LC, Scott RM (1997) Presentation and management of Chiari I malformation in children. Pediatr Neurosurg 26(4):190–196. https://doi.org/10.1159/000121190

    Article  CAS  PubMed  Google Scholar 

  10. Masang Ban Bolly H, Faried A, Laurens Jembise T, FuadWirakusumah F, ZafrullahArifin M (2020) The ideal selection criteria for duraplasty material in brain surgery: a review. Interdiscip Neurosurg 22:100800. https://doi.org/10.1016/j.inat.2020.100800

    Article  Google Scholar 

  11. Mozaffari K, Davidson L, Chalif E, Phan TN, Sparks AD, Myseros JS et al (2021) Long-term outcomes of posterior fossa decompression for Chiari malformation type 1: which patients are most prone to failure? Childs Nerv Syst 37(9):2891–2898. https://doi.org/10.1007/s00381-021-05280-y

    Article  PubMed  Google Scholar 

  12. Yahanda AT, Adelson PD, Akbari SHA, Albert GW, Aldana PR, Alden TD et al (2021) Dural augmentation approaches and complication rates after posterior fossa decompression for Chiari I malformation and syringomyelia: a Park-Reeves Syringomyelia Research Consortium study. J Neursurg Pediatr 27(4):459–468. https://doi.org/10.3171/2020.8.PEDS2087

    Article  Google Scholar 

  13. Ene CI, Wang AC, Collins KL, Bonow RH, McGrath LB, Durfy SJ et al (2021) Expansile duraplasty and obex exploration compared with bone-only decompression for Chiari malformation type I in children: retrospective review of outcomes and complications. J Neursurg Pediatr 27(1):1–8. https://doi.org/10.3171/2020.6.PEDS20376

    Article  Google Scholar 

  14. Kemerdere R, Akgun MY, Cetintas SC, Kacira T, Tanriverdi T (2020) Clinical and radiological outcomes of arachnoid-preseving suboccipital decompression for adult chiari I malformation with and without syringomyelia. Clin Neurol Neurosurg 188:105598. https://doi.org/10.1016/j.clineuro.2019.105598

    Article  PubMed  Google Scholar 

  15. Jiang E, Sha S, Yuan X, Zhu W, Jiang J, Ni H et al (2018) Comparison of clinical and radiographic outcomes for posterior fossa decompression with and without duraplasty for treatment of pediatric Chiari I malformation: a prospective study. World Neurosurg 110:e465–e472. https://doi.org/10.1016/j.wneu.2017.11.007

    Article  PubMed  Google Scholar 

  16. Hoffman CE, Souweidane MM (2008) Cerebrospinal fluid-related complications with autologous duraplasty and arachnoid sparing in type I Chiari malformation. Neurosurgery 62(3 Suppl 1):156–60. https://doi.org/10.1227/01.neu.0000317387.76185.ac (discussion 60-1)

    Article  PubMed  Google Scholar 

  17. Sindou M, Chávez-Machuca J, Hashish H (2002) Cranio-cervical decompression for Chiari type I-malformation, adding extreme lateral foramen magnum opening and expansile duroplasty with arachnoid preservation. Technique and long-term functional results in 44 consecutive adult cases -- comparison with literature data. Acta Neurochir 144(10):1005–19. https://doi.org/10.1007/s00701-002-1004-8

    Article  CAS  PubMed  Google Scholar 

  18. Koueik J, Sandoval-Garcia C, Kestle JRW, Rocque BG, Frim DM, Grant GA et al (2020) Outcomes in children undergoing posterior fossa decompression and duraplasty with and without tonsillar reduction for Chiari malformation type I and syringomyelia: a pilot prospective multicenter cohort study. J Neurosurg: Pediatr PED 25(1):21–29. https://doi.org/10.3171/2019.8.PEDS19154

    Article  Google Scholar 

  19. Cools MJ, Quinsey CS, Elton SW (2018) Chiari decompression outcomes using ligamentum nuchae harvest and duraplasty in pediatric patients with Chiari malformation type I. J Neurosurg: Pediatr PED 22(1):47–51. https://doi.org/10.3171/2018.1.PEDS17670

    Article  Google Scholar 

  20. Mutchnick IS, Janjua RM, Moeller K, Moriarty TM (2010) Decompression of Chiari malformation with and without duraplasty: morbidity versus recurrence: Clinical article. J Neurosurg: Pediatr PED 5(5):474–478. https://doi.org/10.3171/2010.1.PEDS09218

    Article  Google Scholar 

  21. Kunert P, Janowski M, Zakrzewska A, Marchel A (2009) Comparision of results between two different techniques of cranio-cervical decompression in patients with Chiari I malformation. Neurol Neurochir Pol 43(4):337–345

    PubMed  Google Scholar 

  22. Vanaclocha V, Saiz-Sapena N, Garcia-Casasola MC (1997) Surgical technique for cranio-cervical decompression in syringomyelia associated with Chiari type I malformation. Acta Neurochir 139(6):529–39. https://doi.org/10.1007/BF02750996 (discussion 39-40)

    Article  CAS  PubMed  Google Scholar 

  23. Fischer EG (1995) Posterior fossa decompression for Chiari I deformity, including resection of the cerebellar tonsils. Child’s Nerv Syst: ChNS : Off J Int Soc Pediatr Neurosurg 11(11):625–629. https://doi.org/10.1007/BF00300718

    Article  CAS  Google Scholar 

  24. Varaprasad KS, Krishna KM, Rao YS (2019) A study on foramen magnum decompression and duroplasty and its clinical outcome on acm with syringomyelia--our institute experience. J Evol Med Dent Sci 8:NA.

  25. Hidalgo ET, Dastagirzada Y, Orillac C, Kvint S, North E, Bledea R et al (2018) Time to resolution of symptoms after suboccipital decompression with duraplasty in children with Chiari malformation type I. World Neurosurg 117:e544–e551. https://doi.org/10.1016/j.wneu.2018.06.073

    Article  PubMed  Google Scholar 

  26. Zhang L, Yi Z, Duan H, Li L (2017) A novel autologous duraplasty in situ technique for the treatment of Chiari malformation Type I. J Neurosurg JNS 126(1):91–97. https://doi.org/10.3171/2016.1.JNS152161

    Article  Google Scholar 

  27. Zuev AA, Pedyash NV, Epifanov DS, Kostenko GV (2016) Results of surgical treatment of syringomyelia associated with Chiari 1 malformation An analysis of 125 cases. Zh Vopr Neirokhir Im N N Burdenko 80(1):27–34. https://doi.org/10.17116/neiro201680127-34

    Article  CAS  PubMed  Google Scholar 

  28. Shimoji K, Hara T, Ohara Y (2019) Controversies related to pediatric Chiari I malformation. Child’s Nerv Syst: ChNS : Off J Int Soc Pediatr Neurosurg 35(10):1695–1699. https://doi.org/10.1007/s00381-019-04243-8

    Article  Google Scholar 

  29. Limonadi FM, Selden NR (2004) Dura-splitting decompression of the craniocervical junction: reduced operative time, hospital stay, and cost with equivalent early outcome. J Neursurg Pediatr 101(2):184–188. https://doi.org/10.3171/ped.2004.101.2.0184

    Article  Google Scholar 

  30. Geng L-Y, Liu X, Zhang Y-S, He S-X, Huang Q-J, Liu Y et al (2018) Dura-splitting versus a combined technique for Chiari malformation type I complicated with syringomyelia. Br J Neurosurg 32(5):479–83. https://doi.org/10.1080/02688697.2018.1498448

    Article  Google Scholar 

  31. Srinivas D, Veena Kumari HB, Somanna S, Bhagavatula I, Anandappa CB (2011) The incidence of postoperative meningitis in neurosurgery: an institutional experience. Neurol India 59(2):195–198. https://doi.org/10.4103/0028-3886.79136

    Article  PubMed  Google Scholar 

  32. Erdem I, Hakan T, Ceran N, Metin F, Akcay SS, Kucukercan M et al (2008) Clinical features, laboratory data, management and the risk factors that affect the mortality in patients with postoperative meningitis. Neurol India 56(4):433–437. https://doi.org/10.4103/0028-3886.44629

    Article  PubMed  Google Scholar 

  33. McClelland S 3rd, Hall WA (2007) Postoperative central nervous system infection: incidence and associated factors in 2111 neurosurgical procedures. Clin Infect Dis: An Off Publ Infect Dis Soc Am 45(1):55–59. https://doi.org/10.1086/518580

    Article  Google Scholar 

  34. Kourbeti IS, Jacobs AV, Koslow M, Karabetsos D, Holzman RS (2007) Risk factors associated with postcraniotomy meningitis. Neurosurgery 60(2):317–25. https://doi.org/10.1227/01.Neu.0000249266.26322.25 (discussion 25-6)

    Article  PubMed  Google Scholar 

  35. Reichert MC, Medeiros EA, Ferraz FA (2002) Hospital-acquired meningitis in patients undergoing craniotomy: incidence, evolution, and risk factors. Am J Infect Control 30(3):158–164. https://doi.org/10.1067/mic.2002.119925

    Article  PubMed  Google Scholar 

  36. Federico G, Tumbarello M, Spanu T, Rosell R, Iacoangeli M, Scerrati M et al (2001) Risk factors and prognostic indicators of bacterial meningitis in a cohort of 3580 postneurosurgical patients. Scand J Infect Dis 33(7):533–537. https://doi.org/10.1080/00365540110026557

    Article  CAS  PubMed  Google Scholar 

  37. Blomstedt GC (1985) Infections in neurosurgery: a retrospective study of 1143 patients and 1517 operations. Acta Neurochir 78(3–4):81–90. https://doi.org/10.1007/BF01808684

    Article  CAS  PubMed  Google Scholar 

  38. Tubbs RS, McGirt MJ, Oakes WJ (2003) Surgical experience in 130 pediatric patients with Chiari I malformations. J Neurosurg 99(2):291–296. https://doi.org/10.3171/jns.2003.99.2.0291

    Article  PubMed  Google Scholar 

  39. Dlouhy BJ, Menezes AH (2018) Autologous cervical fascia duraplasty in 123 children and adults with Chiari malformation type I: surgical technique and complications. J Neurosurg: Pediatr PED 22(3):297–305. https://doi.org/10.3171/2018.3.PEDS17550

    Article  Google Scholar 

  40. Attenello FJ, McGirt MJ, Garcés-Ambrossi GL, Chaichana KL, Carson B, Jallo GI (2009) Suboccipital decompression for Chiari I malformation: outcome comparison of duraplasty with expanded polytetrafluoroethylene dural substitute versus pericranial autograft. Child’s Nerv Syst: ChNS : Off J Int Soc Pediatr Neurosurg 25(2):183–190. https://doi.org/10.1007/s00381-008-0700-y

    Article  Google Scholar 

  41. Yahanda AT, Simon LE, Limbrick DD (2021) Outcomes for various dural graft materials after posterior fossa decompression with duraplasty for Chiari malformation type I: a systematic review and meta-analysis. J Neurosurg 135(5):1356–1369. https://doi.org/10.3171/2020.9.JNS202641

    Article  Google Scholar 

  42. Alzate JC, Kothbauer KF, Jallo GI, Epstein FJ (2001) Treatment of Chiari type I malformation in patients with and without syringomyelia: a consecutive series of 66 cases. Neurosurg Focus FOC 11(1):1–9. https://doi.org/10.3171/foc.2001.11.1.4

    Article  Google Scholar 

  43. ElhadjiCheikhNdiaye SY, Troude L, Al-Falasi M, Faye M, Melot A, Roche PH (2019) Chiari malformations in adults: a single center surgical experience with special emphasis on the kinetics of clinical improvement. Neuro-Chirurgie 65(2–3):69–74. https://doi.org/10.1016/j.neuchi.2018.10.010

    Article  CAS  Google Scholar 

  44. Yamagata S, Goto K, Oda Y, Kikuchi H (1993) Clinical experience with expanded polytetrafluoroethylene sheet used as an artificial dura mater. Neurol Med Chir 33(8):582–585. https://doi.org/10.2176/nmc.33.582

    Article  CAS  Google Scholar 

  45. Alleyne CH, Barrow DL (1994) Immune response in hosts with cadaveric dural grafts: report of two cases. J Neurosurg 81(4):610–613. https://doi.org/10.3171/jns.1994.81.4.0610

    Article  PubMed  Google Scholar 

  46. Hoffman H, Bunch KM, Paul T, Krishnamurthy S (2021) Comparison of pericranial autograft and AlloDerm for duraplasty in patients with type I Chiari malformation: retrospective cohort analysis. Oper Neurosurg 21(6):386–392. https://doi.org/10.1093/ons/opab343

    Article  Google Scholar 

  47. Soo C, Rahbar G, Moy RL (1993) The immunogenicity of bovine collagen implants. J Dermatol Surg Oncol 19(5):431–3. https://doi.org/10.1111/j.1524-4725.1993.tb00370.x

    Article  CAS  PubMed  Google Scholar 

  48. Anson JA, Marchand EP (1996) Bovine pericardium for dural grafts: clinical results in 35 patients. Neurosurg 39(4):764–768. https://doi.org/10.1097/00006123-199610000-00025

    Article  CAS  Google Scholar 

  49. Laun A, Tonn JC, Jerusalem C (1990) Comparative study of lyophilized human dura mater and lyophilized bovine pericardium as dural substitutes in neurosurgery. Acta Neurochir 107(1–2):16–21. https://doi.org/10.1007/BF01402607

    Article  CAS  PubMed  Google Scholar 

  50. Begley K, Parkinson J (2022) Eosinophilic meningitis from bovine graft duraplasty treated without explantation. Interdiscip Neurosurg 27:101445. https://doi.org/10.1016/j.inat.2021.101445

    Article  Google Scholar 

  51. Guyotat J, Bret P, Jouanneau E, Ricci AC, Lapras C (1998) Syringomyelia associated with type I Chiari malformation. A 21-year retrospective study on 75 cases treated by foramen magnum decompression with a special emphasis on the value of tonsils resection. Acta Neurochir 140(8):745–54. https://doi.org/10.1007/s007010050175

    Article  CAS  PubMed  Google Scholar 

  52. Jia C, Li H, Wu J, Gao K, Zhao CB, Li M et al (2019) Comparison decompression by duraplasty or cerebellar tonsillectomy for Chiari malformation-I complicated with syringomyelia. Clin Neurol Neurosurg 176:1–7. https://doi.org/10.1016/j.clineuro.2018.11.008

    Article  PubMed  Google Scholar 

  53. Osborne-Grinter M, Arora M, Kaliaperumal C, Gallo P (2021) Posterior fossa decompression and duraplasty with and without arachnoid preservation for the treatment of adult Chiari malformation type 1: a systematic Review and meta-analysis. World Neurosurg 151:e579–e598. https://doi.org/10.1016/j.wneu.2021.04.082

    Article  PubMed  Google Scholar 

  54. Lee HS, Lee SH, Kim ES, Kim JS, Lee JI, Shin HJ et al (2012) Surgical results of arachnoid-preserving posterior fossa decompression for Chiari I malformation with associated syringomyelia. J Clin Neurosci: Off J Neurosurg Soc Australas 19(4):557–560. https://doi.org/10.1016/j.jocn.2011.06.034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

OJ and BA were involved in conceptualization. OJ, BA, AS, MA, AT, SA, SN, AN, and MJ were involved in data curation, formal analysis, investigation, methodology, project administration, resources, software, validation, visualization, and writing the original draft. OJ, BA, AS, MA, AT, SA, SN, AN, and MJ were involved in supervision and reviewing and editing the manuscript.

Corresponding author

Correspondence to Mohammad A. Jamous.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Human and animal ethics

Not applicable.

Consent for publication

All authors agreed to the current version of the manuscript and agreed to submit it to the journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jbarah, O.F., Aburayya, B.I., Shatnawi, A.R. et al. Risk of meningitis after posterior fossa decompression with duraplasty using different graft types in patients with Chiari malformation type I and syringomyelia: a systematic review and meta-analysis. Neurosurg Rev 45, 3537–3550 (2022). https://doi.org/10.1007/s10143-022-01873-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-022-01873-6

Keywords

Navigation