Skip to main content
Log in

Intravenous milrinone for treatment of delayed cerebral ischaemia following subarachnoid haemorrhage: a pooled systematic review

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Small trials have demonstrated promising results utilising intravenous milrinone for the treatment of delayed cerebral ischaemia (DCI) after subarachnoid haemorrhage (SAH). Here we summarise and contextualise the literature and discuss the future directions of intravenous milrinone for DCI. A systematic, pooled analysis of literature was performed in accordance with the PRISMA statement. Methodological rigour was analysed using the MINORS criteria. Extracted data included patient population; treatment protocol; and clinical, radiological, and functional outcome. The primary outcome was clinical resolution of DCI. Eight hundred eighteen patients from 10 single-centre, observational studies were identified. Half (n = 5) of the studies were prospective and all were at high risk of bias. Mean age was 52 years, and females (69%) outnumbered males. There was a similar proportion of low-grade (WFNS 1–2) (49.7%) and high-grade (WFNS 3–5) (50.3%) SAH. Intravenous milrinone was administered to 523/818 (63.9%) participants. Clinical resolution of DCI was achieved in 375/424 (88%), with similar rates demonstrated with intravenous (291/330, 88%) and combined intra-arterial-intravenous (84/94, 89%) therapy. Angiographic response was seen in 165/234 (71%) receiving intravenous milrinone. Hypotension (70/303, 23%) and hypokalaemia (31/287, 11%) were common drug effects. Four cases (0.5%) of drug intolerance occurred. Good functional outcome was achieved in 271/364 (74%) patients. Cerebral infarction attributable to DCI occurred in 47/250 (19%), with lower rates in asymptomatic spasm. Intravenous milrinone is a safe and feasible therapy for DCI. A signal for efficacy is demonstrated in small, low-quality trials. Future research should endeavour to establish the optimal protocol and dose, prior to a phase-3 study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Abulhasan YB, Ortiz Jimenez J, Teitelbaum J, Simoneau G, Angle MR (2020) Milrinone for refractory cerebral vasospasm with delayed cerebral ischemia. J Neurosurg 1:1–12. https://doi.org/10.3171/2020.1.JNS193107

    Article  Google Scholar 

  2. Adami D, Berkefeld J, Platz J, Konczalla J, Pfeilschifter W, Weidauer S, Wagner M (2019) Complication rate of intraarterial treatment of severe cerebral vasospasm after subarachnoid hemorrhage with nimodipine and percutaneous transluminal balloon angioplasty: Worth the risk? J Neuroradiol J Neuroradiol 46:15–24. https://doi.org/10.1016/j.neurad.2018.04.001

    Article  PubMed  Google Scholar 

  3. Aiyagari V, Cross DT, Deibert E, Dacey RG, Diringer MN (2001) Safety of hemodynamic augmentation in patients treated with Guglielmi detachable coils after acute aneurysmal subarachnoid hemorrhage. Stroke 32:1994–1997. https://doi.org/10.1161/hs0901.094621

    Article  PubMed  CAS  Google Scholar 

  4. Aizawa T, Wei H, Miano JM, Abe J, Berk BC, Yan C (2003) Role of phosphodiesterase 3 in NO/cGMP-mediated antiinflammatory effects in vascular smooth muscle cells. Circ Res 93:406–413. https://doi.org/10.1161/01.RES.0000091074.33584.F0

    Article  PubMed  CAS  Google Scholar 

  5. Alamri AS, A A, D T, M A, B L, M L, M B, J T (2016) Use of intra-arterial milrinone rescue therapy in patients with refractory and super refractory vasospasm after aneurysmal subarachnoid hemorrhage. J Neurol Sci. https://doi.org/10.1017/cjn.2016.87

  6. Andersson N, Malm J, Eklund A (2008) Dependency of cerebrospinal fluid outflow resistance on intracranial pressure: clinical article. J Neurosurg 109:918–922. https://doi.org/10.3171/JNS/2008/109/11/0918

    Article  PubMed  Google Scholar 

  7. Arakawa Y, Kikuta K, Hojo M, Goto Y, Ishii A, Yamagata S (2001) Milrinone for the treatment of cerebral vasospasm after subarachnoid hemorrhage: report of seven cases. Neurosurgery 48:723-8-discussion 728-30. https://doi.org/10.1097/00006123-200104000-00004

  8. Awad IA, Carter LP, Spetzler RF, Medina M, Williams FC (1987) Clinical vasospasm after subarachnoid hemorrhage: response to hypervolemic hemodilution and arterial hypertension. Stroke 18:365–372. https://doi.org/10.1161/01.str.18.2.365

    Article  PubMed  CAS  Google Scholar 

  9. Barrett KE, Barman SM, Boitano S, Brooks H (2015) Ganong’s Review of Medical Physiology, 25th edn. McGraw Hill Professional

  10. Bergman MR, Holycross BJ (1996) Pharmacological modulation of myocardial tumor necrosis factor alpha production by phosphodiesterase inhibitors. J Pharmacol Exp Ther 279:247–254

    PubMed  CAS  Google Scholar 

  11. Bianchi MO, Cheung P-Y, Phillipos E, Aranha-Netto A, Joynt C (2015) The effect of milrinone on splanchnic and cerebral perfusion in infants with congenital heart disease prior to surgery. Shock (Augusta, Ga) 44:115–120. https://doi.org/10.1097/shk.0000000000000388

    Article  CAS  Google Scholar 

  12. Bieber M, Schuhmann MK, Volz J, Kumar GJ, Vaidya JR, Nieswandt B, Pham M, Stoll G, Kleinschnitz C, Kraft P (2019) Description of a novel phosphodiesterase (PDE)-3 inhibitor protecting mice from ischemic stroke independent from platelet function. Stroke 50:478–486. https://doi.org/10.1161/STROKEAHA.118.023664

    Article  PubMed  CAS  Google Scholar 

  13. Birk S, Edvinsson L, Olesen J, Kruuse C (2004) Analysis of the effects of phosphodiesterase type 3 and 4 inhibitors in cerebral arteries. Eur J Pharmacol 489:93–100. https://doi.org/10.1016/j.ejphar.2004.02.038

    Article  PubMed  CAS  Google Scholar 

  14. Budohoski KP, Czosnyka M, Kirkpatrick PJ, Smielewski P, Steiner LA, Pickard JD (2013) Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nat Rev Neurol 9:152–163. https://doi.org/10.1038/nrneurol.2013.11

    Article  PubMed  CAS  Google Scholar 

  15. Castle-Kirszbaum M, Ayton S, Goldschlager T (2020) Letter to the Editor. Hyperglycolysis as a common cause for elevated lactate in subarachnoid hemorrhage. J Neurosurg 1–2. https://doi.org/10.3171/2020.1.JNS20191

  16. Castle-Kirszbaum M, Parkin WG, Goldschlager T, Lewis PM (2021) Cardiac output and cerebral blood flow: a systematic review of cardio-cerebral coupling. J Neurosurg Anesthesiol. In Press 1–33

  17. Choi JM, Shin HK, Kim KY, Lee JH, Hong KW (2002) Neuroprotective effect of cilostazol against focal cerebral ischemia via antiapoptotic action in rats. J Pharmacol Exp Ther 300:787–793. https://doi.org/10.1124/jpet.300.3.787

    Article  PubMed  CAS  Google Scholar 

  18. Clark JF, Reilly M, Sharp FR (2002) Oxidation of bilirubin produces compounds that cause prolonged vasospasm of rat cerebral vessels: a contributor to subarachnoid hemorrhage-induced vasospasm. J Cereb Blood Flow Metab 22:472–478. https://doi.org/10.1097/00004647-200204000-00011

    Article  PubMed  CAS  Google Scholar 

  19. Sander CE, Rabinstein AA, Ricardo CJ, Derdeyn CP, Jacques D, Higashida RT, Hoh BL, Kirkness CJ, Naidech AM, Ogilvy CS, Patel AB, Gregory TB, Paul V (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage. Stroke 43:1711–1737. https://doi.org/10.1161/STR.0b013e3182587839

    Article  Google Scholar 

  20. Cremers CHP, van der Schaaf IC, Wensink E, Greving JP, Rinkel GJE, Velthuis BK, Vergouwen MDI (2014) CT perfusion and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Cereb Blood Flow Metab 34:200–207

    Article  Google Scholar 

  21. Crespy T, Heintzelmann M, Chiron C, Vinclair M, Tahon F, Francony G, Payen J-F (2019) Which protocol for milrinone to treat cerebral vasospasm associated with subarachnoid hemorrhage? J Neurosurg Anesthesiol 31:323–329. https://doi.org/10.1097/ana.0000000000000527

    Article  PubMed  Google Scholar 

  22. De Leon A, Polderman K, Abrego G c, Alfaro F (2014) Milrinone to improve outcome in cerebral vasospasm after SAH. From april 2012 to april 2013 neuro-ICU caja del seguro social. Panama. Neurocritical Care. https://doi.org/10.1007/s12028-014-0034-4

  23. Dhar R, Diringer MN (2014) Relationship between angiographic vasospasm, cerebral blood flow, and cerebral infarction after subarachnoid hemorrhage. Springer International Publishing, pp 161–165

  24. Dhar R, Washington C, Diringer M, Zazulia A, Jafri H, Derdeyn C, Zipfel G (2016) Acute effect of intravenous sildenafil on cerebral blood flow in patients with vasospasm after subarachnoid hemorrhage. Neurocrit Care 25:201–204. https://doi.org/10.1007/s12028-016-0243-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dreier JP (2011) The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 17:439–447. https://doi.org/10.1038/nm.2333

    Article  PubMed  CAS  Google Scholar 

  26. Dreier JP, Major S, Manning A, Woitzik J, Drenckhahn C, Steinbrink J, Tolias C, Oliveira-Ferreira AI, Fabricius M, Hartings JA, Vajkoczy P, Lauritzen M, Dirnagl U, Bohner G, Strong AJ, group C study (2009) Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain 132:1866–1881. https://doi.org/10.1093/brain/awp102

    Article  PubMed  PubMed Central  Google Scholar 

  27. Drexler H, Höing S, Faude F, Wollschläger H, Just H (1987) Central and regional vascular hemodynamics following intravenous milrinone in the conscious rat: comparison with dobutamine. J Cardiovasc Pharmacol 9:563–569. https://doi.org/10.1097/00005344-198705000-00010

    Article  PubMed  CAS  Google Scholar 

  28. Eden SV, Meurer WJ, Sánchez BN, Lisabeth LD, Smith MA, Brown DL, Morgenstern LB (2008) Gender and ethnic differences in subarachnoid hemorrhage. Neurology 71:731–735. https://doi.org/10.1212/01.wnl.0000319690.82357.44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Fraticelli AT, Cholley BP, Losser M-R, Saint Maurice J-P, Payen D (2008) Milrinone for the treatment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 39:893–898. https://doi.org/10.1161/STROKEAHA.107.492447

    Article  PubMed  CAS  Google Scholar 

  30. Frontera JA, Fernandez A, Schmidt JM, Claassen J, Wartenberg KE, Badjatia N, Connolly ES, Mayer SA (2010) Clinical response to hypertensive hypervolemic therapy and outcome after subarachnoid hemorrhage. Neurosurgery 66:35–41. https://doi.org/10.1227/01.neu.0000359530.04529.07

    Article  PubMed  Google Scholar 

  31. Gathier CS, van den Bergh WM, van der Jagt M, Verweij BH, Dankbaar JW, Müller MC, Oldenbeuving AW, Rinkel GJE, Slooter AJC, Group H-S (2018) Induced hypertension for delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a randomized clinical trial. Stroke 49:76–83. https://doi.org/10.1161/strokeaha.117.017956

    Article  PubMed  Google Scholar 

  32. Gathier CS, Dankbaar JW, van der Jagt M, Verweij BH, Oldenbeuving AW, Rinkel GJE, van den Bergh WM, Slooter AJC, Group H-S (2015) Effects of induced hypertension on cerebral perfusion in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a randomized clinical trial. Stroke 46:3277–3281. https://doi.org/10.1161/strokeaha.115.010537

    Article  PubMed  Google Scholar 

  33. Ghanem MA, Shabana AM (2014) Effects of milrinone continuous intravenous infusion on global cerebral oxygenation and cerebral vasospasm after cerebral aneurysm surgical clipping. J Anaesth. https://doi.org/10.1016/j.egja.2013.07.006

  34. Grubb S, Cai C, Hald BO, Khennouf L, Murmu RP, Jensen AGK, Fordsmann J, Zambach S, Lauritzen M (2020) Precapillary sphincters maintain perfusion in the cerebral cortex. Nat Commun 11:395. https://doi.org/10.1038/s41467-020-14330-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Haegens NM, Gathier CS, Horn J, Coert BA, Verbaan D, van den Bergh WM (2018) Induced hypertension in preventing cerebral infarction in delayed cerebral ischemia after subarachnoid hemorrhage. Stroke 49:2630–2636. https://doi.org/10.1161/strokeaha.118.022310

    Article  PubMed  Google Scholar 

  36. Harik SI, Sharma VK, Wetherbee JR, Warren RH, Banerjee SP (1981) Adrenergic and cholinergic receptors of cerebral microvessels. J Cereb Blood Flow Metab 1:329–338. https://doi.org/10.1038/jcbfm.1981.36

    Article  PubMed  CAS  Google Scholar 

  37. Hayashida N, Tomoeda H, Oda T, Tayama E, Chihara S, Kawara T, Aoyagi S (1999) Inhibitory effect of milrinone on cytokine production after cardiopulmonary bypass. Ann Thorac Surg 68:1661–1667. https://doi.org/10.1016/S0003-4975(99)00716-X

    Article  PubMed  CAS  Google Scholar 

  38. Higgins JPT, Cochrane Collaboration (2020) Cochrane handbook for systematic reviews of interventions, Second edn. Wiley-Blackwell, Hoboken, NJ

  39. Honerjäger P (1991) Pharmacology of bipyridine phosphodiesterase III inhibitors. Am Heart J 121:1939–1944. https://doi.org/10.1016/0002-8703(91)90828-6

    Article  PubMed  Google Scholar 

  40. Iida H, Iida M, Takenaka M, Oda A, Uchida M, Fujiwara H, Dohi S (2001) The effects of alpha-human atrial natriuretic peptide and milrinone on pial vessels during blood-brain barrier disruption in rabbits. Anesth Analg 93:177–182. https://doi.org/10.1097/00000539-200107000-00035

    Article  PubMed  CAS  Google Scholar 

  41. Jabbarli R, Pierscianek D, Rölz R, Oppong MD, Kaier K, Shah M, Taschner C, Mönninghoff C, Urbach H, Beck J, Sure U, Forsting M (2019) Endovascular treatment of cerebral vasospasm after subarachnoid hemorrhage: more is more. Neurology 93:e458–e466. https://doi.org/10.1212/wnl.0000000000007862

    Article  PubMed  Google Scholar 

  42. Jaeger M, Soehle M, Schuhmann MU, Meixensberger J (2012) Clinical significance of impaired cerebrovascular autoregulation after severe aneurysmal subarachnoid hemorrhage. Stroke 43:2097–2101

    Article  Google Scholar 

  43. Jeng JS, Yip PK, Huang SJ, Kao MC (1999) Changes in hemodynamics of the carotid and middle cerebral arteries before and after endoscopic sympathectomy in patients with palmar hyperhidrosis: preliminary results. J Neurosurg 90:463–467. https://doi.org/10.3171/jns.1999.90.3.0463

    Article  PubMed  CAS  Google Scholar 

  44. Jespersen SN, Østergaard L (2012) The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab 32:264–277. https://doi.org/10.1038/jcbfm.2011.153

    Article  PubMed  CAS  Google Scholar 

  45. Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C, Luscher TF (1995) Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 91:1314–1319. https://doi.org/10.1161/01.cir.91.5.1314

    Article  PubMed  CAS  Google Scholar 

  46. Kajita Y, Dietrich HH, Dacey RGJ (1996) Effects of oxyhemoglobin on local and propagated vasodilatory responses induced by adenosine, adenosine diphosphate, and adenosine triphosphate in rat cerebral arterioles. J Neurosurg 85:908–916. https://doi.org/10.3171/jns.1996.85.5.0908

    Article  PubMed  CAS  Google Scholar 

  47. Kauffman RF, Schenck KW, Utterback BG, Crowe VG, Cohen ML (1987) In vitro vascular relaxation by new inotropic agents: relationship to phosphodiesterase inhibition and cyclic nucleotides. J Pharmacol Exp Ther 242:864–872

    PubMed  CAS  Google Scholar 

  48. Khennouf L, Gesslein B, Brazhe A, Octeau JC, Kutuzov N, Khakh BS, Lauritzen M (2018) Active role of capillary pericytes during stimulation-induced activity and spreading depolarization. Brain 141:2032–2046. https://doi.org/10.1093/brain/awy143

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kim DH, Joseph M, Ziadi S, Nates J, Dannenbaum M, Malkoff M (2003) Increases in cardiac output can reverse flow deficits from vasospasm independent of blood pressure: a study using xenon computed tomographic measurement of cerebral blood flow. Clin Neurosurg 53:1044–1052. https://doi.org/10.1227/01.neu.0000088567.59324.78

    Article  Google Scholar 

  50. Komas N, Lugnier C, Stoclet JC (1991) Endothelium-dependent and independent relaxation of the rat aorta by cyclic nucleotide phosphodiesterase inhibitors. Br J Pharmacol 104:495–503. https://doi.org/10.1111/j.1476-5381.1991.tb12457.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lannes M, Teitelbaum J, Cortés M d P, Cardoso M, Angle M (2012) Milrinone and homeostasis to treat cerebral vasospasm associated with subarachnoid hemorrhage: the Montreal Neurological Hospital Protocol. Neurocrit Care 16:354–362. https://doi.org/10.1007/s12028-012-9701-5

    Article  PubMed  Google Scholar 

  52. Laskowitz DT, Kolls BJ (2010) Neuroprotection in Subarachnoid Hemorrhage. Stroke 41:S79–S84. https://doi.org/10.1161/STROKEAHA.110.595090

    Article  PubMed  PubMed Central  Google Scholar 

  53. Levy ML, Rabb CH, Zelman V, Giannotta SL (1993) Cardiac performance enhancement from dobutamine in patients refractory to hypervolemic therapy for cerebral vasospasm. J Neurosurg 79:494–499. https://doi.org/10.3171/jns.1993.79.4.0494

    Article  PubMed  CAS  Google Scholar 

  54. Macdonald RL, Pluta RM, Zhang JH (2007) Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Rev Neurol 3:256–263. https://doi.org/10.1038/ncpneuro0490

    Article  CAS  Google Scholar 

  55. Macdonald RL, Weir B, Zhang J, Marton LS, Sajdak M, Johns LM (1997) Adenosine triphosphate and hemoglobin in vasospastic monkeys. Neurosurg Focus 3:e3

    Article  CAS  Google Scholar 

  56. Miller JA, Jr RGD, Diringer MN (1995) Safety of hypertensive hypervolemic therapy with phenylephrine in the treatment of delayed ischemic deficits after subarachnoid hemorrhage. Stroke 26:2260–2266. https://doi.org/10.1161/01.str.26.12.2260

  57. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339. https://doi.org/10.1136/bmj.b2535

  58. Molnar-Kimber K, Yonno L, Heaslip R, Weichman B (1993) Modulation of TNFα and IL-1β from endotoxin-stimulated monocytes by selective PDE isozyme inhibitors. Agents Actions 39:C77–C79. https://doi.org/10.1007/BF01972726

    Article  PubMed  CAS  Google Scholar 

  59. Murphy A, Manoel AL d O, Macdonald RL, Baker A, Lee T-Y, Marotta T, Montanera W, Aviv R, Bharatha A (2017) Changes in cerebral perfusion with induced hypertension in aneurysmal subarachnoid hemorrhage: a pilot and feasibility study. Neurocrit Care 27:3–10. https://doi.org/10.1007/s12028-017-0379-6

    Article  PubMed  Google Scholar 

  60. Murray KJ (1990) Cyclic AMP and mechanisms of vasolidation. Pharmacol Ther 47:329–345. https://doi.org/10.1016/0163-7258(90)90060-F

    Article  PubMed  CAS  Google Scholar 

  61. Mutoh T, Ishikawa T, Kazumata K, Matsumoto K, Taki Y, Suzuki A (2014) Dobutamine versus mirlinone for intensive hemodynamic augmentation to relieve clinical delayed cerebral ischemia after subarachnoid hemorrhage. Stroke

  62. Mutoh T, Mutoh T, Nakamura K, Yamamoto Y, Tsuru Y, Tsubone H, Ishikawa T, Taki Y (2017) Acute cardiac support with intravenous milrinone promotes recovery from early brain injury in a murine model of severe subarachnoid haemorrhage. Clin Exp Pharmacol Physiol 44:463–469. https://doi.org/10.1111/1440-1681.12718

    Article  PubMed  CAS  Google Scholar 

  63. Mutoh T, Mutoh T, Sasaki K, Nakamura K, Tatewaki Y, Ishikawa T, Taki Y (2017) Neurocardiac protection with milrinone for restoring acute cerebral hypoperfusion and delayed ischemic injury after experimental subarachnoid hemorrhage. Neurosci Lett 640:70–75. https://doi.org/10.1016/j.neulet.2017.01.008

    Article  PubMed  CAS  Google Scholar 

  64. Nakai K, Itakura T, Naka Y, Nakakita K, Kamei I, Imai H, Yokote H, Komai N (1986) The distribution of adrenergic receptors in cerebral blood vessels: an autoradiographic study. Brain Res 381:148–152. https://doi.org/10.1016/0006-8993(86)90703-1

    Article  PubMed  CAS  Google Scholar 

  65. Nishiguchi M, Ono S, Iseda K, Manabe H, Hishikawa T, Date I (2010) Effect of vasodilation by milrinone, a phosphodiesterase III inhibitor, on vasospastic arteries after a subarachnoid hemorrhage in vitro and in vivo: effectiveness of cisternal injection of milrinone. Neurosurgery 66:158–164. https://doi.org/10.1227/01.neu.0000363153.62579.ff

    Article  PubMed  Google Scholar 

  66. Nolan CP, Macdonald RL (2006) Can angiographic vasospasm be used as a surrogate marker in evaluating therapeutic interventions for cerebral vasospasm? Neurosurg Focus 21:E1–E8. https://doi.org/10.3171/foc.2006.21.3.1

    Article  PubMed  Google Scholar 

  67. Ohman J, Servo A, Heiskanen O (1991) Risks factors for cerebral infarction in good-grade patients after aneurysmal subarachnoid hemorrhage and surgery: a prospective study. J Neurosurg 74:14–20. https://doi.org/10.3171/jns.1991.74.1.0014

    Article  PubMed  CAS  Google Scholar 

  68. de Oliveira Manoel AL, Goffi A, Marotta TR, Schweizer TA, Abrahamson S, Macdonald RL (2016) The critical care management of poor-grade subarachnoid haemorrhage. Crit Care 20:21. https://doi.org/10.1186/s13054-016-1193-9

    Article  PubMed  PubMed Central  Google Scholar 

  69. Orstavik O, Ata SH, Riise J, Dahl CP, Andersen GO, Levy FO, Skomedal T, Osnes J-B, Qvigstad E (2014) Inhibition of phosphodiesterase-3 by levosimendan is sufficient to account for its inotropic effect in failing human heart. Br J Pharmacol 171:5169–5181. https://doi.org/10.1111/bph.12647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Otsubo H, Takemae T, Inoue T, Kobayashi S, Sugita K (1990) Normovolaemic induced hypertension therapy for cerebral vasospasm after subarachnoid haemorrhage. Acta Neurochir 103:18–26. https://doi.org/10.1007/bf01420187

    Article  PubMed  CAS  Google Scholar 

  71. Painter PR, Edén P, Bengtsson H-U (2006) Pulsatile blood flow, shear force, energy dissipation and Murray’s Law. Theor Biol Med Model 3:31–10. https://doi.org/10.1186/1742-4682-3-31

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pegoli M, Mandrekar J, Rabinstein AA, Lanzino G (2015) Predictors of excellent functional outcome in aneurysmal subarachnoid hemorrhage. J Neurosurg 122:414–418. https://doi.org/10.3171/2014.10.JNS14290

    Article  PubMed  Google Scholar 

  73. Pluta RM (2005) Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther 105:23–56. https://doi.org/10.1016/j.pharmthera.2004.10.002

    Article  PubMed  CAS  Google Scholar 

  74. Porter VA, Bonev AD, Knot HJ, Heppner TJ, Stevenson AS, Kleppisch T, Lederer WJ, Nelson MT (1998) Frequency modulation of Ca 2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides. Am J Phys Cell Phys 274:C1346–C1355. https://doi.org/10.1152/ajpcell.1998.274.5.C1346

    Article  CAS  Google Scholar 

  75. Qureshi AI, Ishfaq A, Ishfaq MF, Pandhi A, Ahmed SI, Singh S, Kerro A, Krishnan R, Deep A, Georgiadis AL (2018) Therapeutic benefit of cilostazol in patients with aneurysmal subarachnoid hemorrhage: a meta-analysis of randomized and nonrandomized studies. J Vasc 10:33–40

    Google Scholar 

  76. Qureshi AI, Suarez JI, Bhardwaj A, Yahia AM, Tamargo RJ, Ulatowski JA (2000) Early predictors of outcome in patients receiving hypervolemic and hypertensive therapy for symptomatic vasospasm after subarachnoid hemorrhage. Crit Care Med 28:824–829. https://doi.org/10.1097/00003246-200003000-00035

    Article  PubMed  CAS  Google Scholar 

  77. Raabe A, Beck J, Keller M, Vatter H, Zimmermann M, Seifert V (2005) Relative importance of hypertension compared with hypervolemia for increasing cerebral oxygenation in patients with cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg 103:974–981. https://doi.org/10.3171/jns.2005.103.6.0974

    Article  PubMed  Google Scholar 

  78. Rouanet C, Reges D, Rocha E, Gagliardi V, Silva G (2017) Treatment with milrinone of delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage: a tertiary academic hospital experience. Eur Stroke J. https://doi.org/10.1177/2396987317705242

  79. Roy B, McCullough LD, Dhar R, Grady J, Wang Y-B, Brown RJ (2017) Comparison of initial vasopressors used for delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Cerebrovasc Dis 43:266–271. https://doi.org/10.1159/000458536

    Article  PubMed  CAS  Google Scholar 

  80. Saklani R, Jaggi A, Singh N (2010) Pharmacological preconditioning by milrinone: memory preserving and neuroprotective effect in ischemia-reperfusion injury in mice. Arch Pharm Res 33:1049–1057. https://doi.org/10.1007/s12272-010-0711-6

    Article  PubMed  CAS  Google Scholar 

  81. Sanelli PC, Kishore S, Gupta A, Mangat H, Rosengart A, Kamel H, Segal A (2014) Delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: proposal of an evidence-based combined clinical and imaging reference standard. AJNR Am J Neuroradiol 35:2209–2214. https://doi.org/10.3174/ajnr.A3782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Sato K, Yoshimoto A (2000) Effects of olprinone on systemic and cerebral circulation in patients with subarachnoid hemorrhage. J Neurosurg Anesthesiol 12:81–83

    Article  CAS  Google Scholar 

  83. Schmidt JM, Wartenberg KE, Fernandez A, Claassen J, Rincon F, Ostapkovich ND, Badjatia N, Parra A, Connolly ES, Mayer SA (2008) Frequency and clinical impact of asymptomatic cerebral infarction due to vasospasm after subarachnoid hemorrhage. J Neurosurg 109:1052–1059. https://doi.org/10.3171/JNS.2008.109.12.1052

    Article  PubMed  Google Scholar 

  84. Shan T, Zhang T, Qian W, Ma L, Li H, You C, Xie X (2019) Effectiveness and feasibility of cilostazol in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Neurol. https://doi.org/10.1007/s00415-019-09198-z

  85. Shenkin HA (1969) Cervical sympathectomy on patients with occlusive cerebrovascular disease. Arch Surg 98:317–320. https://doi.org/10.1001/archsurg.1969.01340090093015

    Article  PubMed  CAS  Google Scholar 

  86. Shenkin HA, Cabieses F, Van Den Noordt G (1951) The effect of bilateral stellectomy upon the cerebral circulation of man. J Clin Invest 30:90–93. https://doi.org/10.1172/JCI102421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J Methodological index for non-randomized studies (MINORS): development and validation of a new instrument. 5. https://doi.org/10.1046/j.1445-2197.2003.02748.x

  88. Soliman R, Zohry G (2019) Effect of magnesium sulphate and milrinone on cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a randomized study. J Anesth. https://doi.org/10.1016/j.bjan.2018.09.005

  89. Stein SC, Levine JM, Nagpal S, LeRoux PD (2006) Vasospasm as the sole cause of cerebral ischemia: how strong is the evidence? Neurosurg Focus 21:1–7. https://doi.org/10.3171/foc.2006.21.3.2

    Article  Google Scholar 

  90. Sulek CA, Blas ML, Lobato EB (2002) Milrinone increases middle cerebral artery blood flow velocity after cardiopulmonary bypass. J Cardiothorac Vasc Anesth 16:64–69. https://doi.org/10.1053/jcan.2002.29680

    Article  PubMed  Google Scholar 

  91. Suzuki J, Iwabuchi T, Hori S (1975) Cervical sympathectomy for cerebral vasospasm after aneurysm rupture. Neurol Med Chir (Tokyo) 15(pt 1):41–50. https://doi.org/10.2176/nmc.15pt1.41

    Article  Google Scholar 

  92. Tranmer BI, Keller TS, Kindt GW, Archer D (1992) Loss of cerebral regulation during cardiac output variations in focal cerebral ischemia. J Neurosurg 77:253–259. https://doi.org/10.3171/jns.1992.77.2.0253

    Article  PubMed  CAS  Google Scholar 

  93. Tsukahara T, Taniguchi T, Shimohama S, Fujiwara M, Handa H (1986) Characterization of beta adrenergic receptors in human cerebral arteries and alteration of the receptors after subarachnoid hemorrhage. Stroke 17:202–207. https://doi.org/10.1161/01.STR.17.2.202

    Article  PubMed  CAS  Google Scholar 

  94. Vas N, Beigh A, Alabdulraheem N, Bosnjakovic P, Abulhasan Y (2013) Targeted intra-arterial milrinone for the treatment of symptomatic cerebral vasospasm in aneurysmal sah. Neurocritical Care. https://doi.org/10.1007/s12028-013-9895-1

  95. Vergouwen MDI, Vermeulen M, van Gijn J, Rinkel GJE, Wijdicks EF, Muizelaar JP, Mendelow AD, Juvela S, Yonas H, Terbrugge KG, Macdonald RL, Diringer MN, Broderick JP, Dreier JP, Roos YBWEM (2010) Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke 41:2391–2395. https://doi.org/10.1161/STROKEAHA.110.589275

  96. Washington CW, Derdeyn CP, Dhar R, Arias EJ, Chicoine MR, Cross DT, Dacey RGJ, Han BH, Moran CJ, Rich KM, Vellimana AK, Zipfel GJ (2016) A phase I proof-of-concept and safety trial of sildenafil to treat cerebral vasospasm following subarachnoid hemorrhage. J Neurosurg 124:318–327. https://doi.org/10.3171/2015.2.JNS142752

    Article  PubMed  CAS  Google Scholar 

  97. Young RA, Ward A (1988) Milrinone: a preliminary review of its pharmacological properties and therapeutic use. Drugs 36:158–192. https://doi.org/10.2165/00003495-198836020-00003

    Article  PubMed  CAS  Google Scholar 

  98. Yukiiri K, Mizushige K, Ueda T, Nishiyama Y, Aoyama T, Kohno M (2001) Effects of olprinone, a phosphodiesterase 3 inhibitor, on regional cerebral blood flow of cerebral cortex in stroke patients. J Cardiovasc Pharmacol 37:375–380. https://doi.org/10.1097/00005344-200104000-00004

    Article  PubMed  CAS  Google Scholar 

  99. Milrinone - Full product Information. In: MIMS Online. https://www.mimsonline.com.au.acs.hcn.com.au/Search/FullPI.aspx?ModuleName=Product%20Info&searchKeyword=milrinone&PreviousPage=~/Search/QuickSearch.aspx&SearchType=&ID=38220001_2. Accessed 6 Jun 2020

Download references

Author information

Authors and Affiliations

Authors

Contributions

MCK collected and analysed the data, wrote the draft, and revised the manuscript. LL helped analyse the data and revise the manuscript. JM, HA, RAD, and TG provided critical interpretation of the data and helped revise the manuscript. RVC helped analyse the data, revised the manuscript, and provided study supervision. All authors read and approved the final manuscript. All authors approved the final submission, and all authors agree to be accountable for all aspects of the work

Corresponding author

Correspondence to Mendel Castle-Kirszbaum.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castle-Kirszbaum, M., Lai, L., Maingard, J. et al. Intravenous milrinone for treatment of delayed cerebral ischaemia following subarachnoid haemorrhage: a pooled systematic review. Neurosurg Rev 44, 3107–3124 (2021). https://doi.org/10.1007/s10143-021-01509-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-021-01509-1

Keywords

Navigation