Skip to main content
Log in

Diffusion-weighted imaging for predicting tumor consistency and extent of resection in patients with pituitary adenoma

  • Original Article
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

This study aimed to investigate the role of diffusion-weighted imaging (DWI) in predicting tumor consistency, extent of surgical resection, and recurrence in pituitary adenoma (PA). We reviewed a prospectively collected database of surgically treated PA between March 2016 and October 2017. Predictors for extent of resection and recurrence/progression were assessed with logistic and Cox regression analysis. Of the 183 patients, the tumor consistency was found soft in 107 (58.5%) patients, intermediate in 41 (22.4%) patients, and hard in 35 (19.1%) patients. The mean of ADC ratio was 0.92 ± 0.22 for hard tumor, 1.03 ± 0.22 for intermediate tumor, and 1.41 ± 0.62 for soft tumor (P < 0.001). The mean collagen content was 25.86% ± 15.00% for hard tumor, 16.05% ± 9.90% for intermediate tumor, and 5.00% ± 6.00% for soft tumor (P < 0.001). Spearman analysis showed a significant correlation between ADC ratio and collagen content (ρ = − 0.367; P < 0.001). Gross-total resection (GTR) was obtained in 68.3% of patients, and multivariable logistic regression analysis showed that ADC ratio (OR, 12.135; 95% CI, 4.001–36.804; P < 0.001), giant PA (OR, 0.233; 95% CI, 0.105–0.520; P < 0.001), and invasion (OR, 0.459; 95% CI, 0.220–0.960; P = 0.039) were significantly predictive of GTR. Twenty-seven (14.8%) patients suffered recurrence/progression in the mean follow-up of 35.14 months. Invasion (HR, 2.728; 95% CI, 1.262–5.899; P = 0.011) was identified as independent predictors of recurrence/progression. ADC ratio of DWI could be used for preoperative assessment of tumor consistency, tumor collagen content, and extent of surgical resection, which might be useful in preoperative planning for patients with PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data of this study are available from the corresponding author upon reasonable request.

References

  1. Abe T, Iwata T, Kawamura N, Izumiyama H, Ikeda H, Matsumoto K (1997) Staged transsphenoidal surgery for fibrous nonfunctioning pituitary adenomas with suprasellar extension. Neurol Med Chir 37:830–837. https://doi.org/10.2176/nmc.37.830

    Article  CAS  Google Scholar 

  2. Aflorei ED, Korbonits M (2014) Epidemiology and etiopathogenesis of pituitary adenomas. J Neuro-Oncol 117:379–394. https://doi.org/10.1007/s11060-013-1354-5

    Article  Google Scholar 

  3. Alimohamadi M, Sanjari R, Shirani M, Alikhani F, Amirjamshidi A (2019) Initial experience with diffusion-weighted imaging to predict the tumor consistency and surgical success in solid growth hormone producing pituitary macroadenomas. Asian J Neurosurg 14:698–701. https://doi.org/10.4103/ajns.AJNS_56_16

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alimohamadi M, Sanjari R, Mortazavi A, Shirani M, Moradi Tabriz H, Hadizadeh Kharazi H, Amirjamshidi A (2014) Predictive value of diffusion-weighted MRI for tumor consistency and resection rate of nonfunctional pituitary macroadenomas. Acta Neurochir 156:2245–2252; discussion 2252. https://doi.org/10.1007/s00701-014-2259-6

    Article  PubMed  Google Scholar 

  5. Azab WA, Nasim K, Abdelnabi EA, Yousef W, Najibullah M, Khan T, Zaidan SN, Bokeris AA, Mostafa KH, Geng D (2019) Endoscopic endonasal excision of large and giant pituitary adenomas: radiological and intraoperative correlates of the extent of resection. World Neurosurg 126:e793–e802. https://doi.org/10.1016/j.wneu.2019.02.151

    Article  PubMed  Google Scholar 

  6. Berkmann S, Fandino J, Müller B, Remonda L, Landolt H (2012) Intraoperative MRI and endocrinological outcome of transsphenoidal surgery for non-functioning pituitary adenoma. Acta Neurochir 154:639–647. https://doi.org/10.1007/s00701-012-1285-5

    Article  PubMed  Google Scholar 

  7. Bladowska J, Bednarek-Tupikowska G, Sokolska V, Badowski R, Moroń K, Bonicki W, Sąsiadek M (2010) MRI image characteristics of materials implanted at sellar region after transsphenoidal resection of pituitary tumours. Pol J Radiol 75:46–54

    PubMed  PubMed Central  Google Scholar 

  8. Bladowska J, Biel A, Zimny A, Lubkowska K, Bednarek-Tupikowska G, Sozanski T, Zaleska-Dorobisz U, Sasiadek M (2011) Are T2-weighted images more useful than T1-weighted contrast-enhanced images in assessment of postoperative sella and parasellar region? Med Sci Monit Int Med J Exp Clin Res 17:Mt83–Mt90. https://doi.org/10.12659/msm.881966

    Article  Google Scholar 

  9. Bladowska J, Zimny A, Guziński M, Hałoń A, Tabakow P, Czyż M, Czapiga B, Jarmundowicz W, Sąsiadek MJ (2013) Usefulness of perfusion weighted magnetic resonance imaging with signal-intensity curves analysis in the differential diagnosis of sellar and parasellar tumors: preliminary report. Eur J Radiol 82:1292–1298. https://doi.org/10.1016/j.ejrad.2013.01.033

    Article  PubMed  Google Scholar 

  10. Boxerman JL, Rogg JM, Donahue JE, Machan JT, Goldman MA, Doberstein CE (2010) Preoperative MRI evaluation of pituitary macroadenoma: imaging features predictive of successful transsphenoidal surgery. AJR Am J Roentgenol 195:720–728. https://doi.org/10.2214/ajr.09.4128

    Article  PubMed  Google Scholar 

  11. Cao L, Chen H, Hong J, Ma M, Zhong Q, Wang S (2013) Magnetic resonance imaging appearance of the medial wall of the cavernous sinus for the assessment of cavernous sinus invasion by pituitary adenomas. J Neuroradiol = Journal de Neuroradiologie 40:245–251. https://doi.org/10.1016/j.neurad.2013.06.003

    Article  PubMed  Google Scholar 

  12. Dallapiazza RF, Grober Y, Starke RM, Laws ER Jr, Jane JA Jr (2015) Long-term results of endonasal endoscopic transsphenoidal resection of nonfunctioning pituitary macroadenomas. Neurosurgery 76:42–53. https://doi.org/10.1227/neu.0000000000000563

    Article  PubMed  Google Scholar 

  13. Fathalla H, Cusimano MD, Di Ieva A, Lee J, Alsharif O, Goguen J, Zhang S, Smyth H (2015) Endoscopic versus microscopic approach for surgical treatment of acromegaly. Neurosurg Rev 38:541–548; discussion 548-549. https://doi.org/10.1007/s10143-015-0613-7

    Article  PubMed  Google Scholar 

  14. Guadilla I, Calle D, Lopez-Larrubia P (2018) Diffusion-weighted magnetic resonance imaging. Methods Mol Biol (Clifton, NJ) 1718:89–101. https://doi.org/10.1007/978-1-4939-7531-0_6

    Article  CAS  Google Scholar 

  15. Itamura K, Chang KE, Lucas J, Donoho DA, Giannotta S, Zada G (2018) Prospective clinical validation of a meningioma consistency grading scheme: association with surgical outcomes and extent of tumor resection. J Neurosurg:1–5. https://doi.org/10.3171/2018.7.Jns1838

  16. Juraschka K, Khan OH, Godoy BL, Monsalves E, Kilian A, Krischek B, Ghare A, Vescan A, Gentili F, Zadeh G (2014) Endoscopic endonasal transsphenoidal approach to large and giant pituitary adenomas: institutional experience and predictors of extent of resection. J Neurosurg 121:75–83. https://doi.org/10.3171/2014.3.Jns131679

    Article  PubMed  Google Scholar 

  17. Kinoshita Y, Yamasaki F, Tominaga A, Ohtaki M, Usui S, Arita K, Sugiyama K, Kurisu K (2016) Diffusion-weighted imaging and the apparent diffusion coefficient on 3T MR imaging in the differentiation of craniopharyngiomas and germ cell tumors. Neurosurg Rev 39:207–213; discussion 213. https://doi.org/10.1007/s10143-015-0660-0

    Article  PubMed  Google Scholar 

  18. Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33:610–618. https://doi.org/10.1227/00006123-199310000-00008

    Article  CAS  PubMed  Google Scholar 

  19. Kondo M, Uchiyama Y (2018) Apparent diffusion coefficient histogram analysis for prediction of prognosis in glioblastoma. J Neuroradiol = Journal de Neuroradiologie 45:236–241. https://doi.org/10.1016/j.neurad.2017.11.011

    Article  PubMed  Google Scholar 

  20. Losa M, Mortini P, Barzaghi R, Ribotto P, Terreni MR, Marzoli SB, Pieralli S, Giovanelli M (2008) Early results of surgery in patients with nonfunctioning pituitary adenoma and analysis of the risk of tumor recurrence. J Neurosurg 108:525–532. https://doi.org/10.3171/jns/2008/108/3/0525

    Article  PubMed  Google Scholar 

  21. Lv L, Yin S, Zhou P, Hu Y, Chen C, Ma W, Jiang Y, Wang Z, Jiang S (2018) Clinical and pathologic characteristics predicted the postoperative recurrence and progression of pituitary adenoma: a retrospective study with 10 years follow-up. World Neurosurg 118:e428–e435. https://doi.org/10.1016/j.wneu.2018.06.210

    Article  PubMed  Google Scholar 

  22. Ma Z, He W, Zhao Y, Yuan J, Zhang Q, Wu Y, Chen H, Yao Z, Li S, Wang Y (2016) Predictive value of PWI for blood supply and T1-spin echo MRI for consistency of pituitary adenoma. Neuroradiology 58:51–57. https://doi.org/10.1007/s00234-015-1591-8

    Article  CAS  PubMed  Google Scholar 

  23. Maeda M, Maier SE (2008) Usefulness of diffusion-weighted imaging and the apparent diffusion coefficient in the assessment of head and neck tumors. J Neuroradiol = Journal de Neuroradiologie 35:71–78. https://doi.org/10.1016/j.neurad.2008.01.080

    Article  PubMed  Google Scholar 

  24. Mascalchi M, Filippi M, Floris R, Fonda C, Gasparotti R, Villari N (2005) Diffusion-weighted MR of the brain: methodology and clinical application. La Radiologia Medica 109:155–197

    PubMed  Google Scholar 

  25. Mastorakos P, Mehta GU, Chatrath A, Moosa S, Lopes MB, Payne SC, Jane JA Jr (2019) Tumor to cerebellar peduncle T2-weighted imaging intensity ratio fails to predict pituitary adenoma consistency. J Neurol Surg B, Skull base 80:252–257. https://doi.org/10.1055/s-0038-1668516

    Article  Google Scholar 

  26. Mohamed FF, Abouhashem S (2013) Diagnostic value of apparent diffusion coefficient (ADC) in assessment of pituitary macroadenoma consistency. Egypt J Radiol Nucl Med 44:617–624. https://doi.org/10.1016/j.ejrnm.2013.05.012

    Article  Google Scholar 

  27. Patel KS, Dhawan S, Wang R, Carter BS, Chen JY, Chen CC (2018) Post-operative imaging assessment of non-functioning pituitary adenomas. Acta Neurochir 160:1029–1039. https://doi.org/10.1007/s00701-018-3491-2

    Article  PubMed  Google Scholar 

  28. Pierallini A, Caramia F, Falcone C, Tinelli E, Paonessa A, Ciddio AB, Fiorelli M, Bianco F, Natalizi S, Ferrante L, Bozzao L (2006) Pituitary macroadenomas: preoperative evaluation of consistency with diffusion-weighted MR imaging--initial experience. Radiology 239:223–231. https://doi.org/10.1148/radiol.2383042204

    Article  PubMed  Google Scholar 

  29. Raverot G, Dantony E, Beauvy J, Vasiljevic A, Mikolasek S, Borson-Chazot F, Jouanneau E, Roy P, Trouillas J (2017) Risk of recurrence in pituitary neuroendocrine tumors: a prospective study using a five-tiered classification. J Clin Endocrinol Metab 102:3368–3374. https://doi.org/10.1210/jc.2017-00773

    Article  PubMed  Google Scholar 

  30. Schwyzer L, Berberat J, Remonda L, Roelcke U (2015) Susceptibility changes in meningiomas influence the apparent diffusion coefficient in diffusion-weighted MRI. J Neuroradiol = Journal de Neuroradiologie 42:332–337. https://doi.org/10.1016/j.neurad.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  31. Su CQ, Zhang X, Pan T, Chen XT, Chen W, Duan SF, Ji J, Hu WX, Lu SS, Hong XN (2019) Texture analysis of high b-value diffusion-weighted imaging for evaluating consistency of pituitary macroadenomas. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26941

  32. Suzuki C, Maeda M, Hori K, Kozuka Y, Sakuma H, Taki W, Takeda K (2007) Apparent diffusion coefficient of pituitary macroadenoma evaluated with line-scan diffusion-weighted imaging. J Neuroradiol = Journal de Neuroradiologie 34:228–235. https://doi.org/10.1016/j.neurad.2007.06.007

    Article  CAS  PubMed  Google Scholar 

  33. Wang H, Li W, Shi D, Ye Z, Qin F, Guo Y, Yuan X (2009) Expression of TGFbeta1 and pituitary adenoma fibrosis. Br J Neurosurg 23:293–296. https://doi.org/10.1080/02688690802617046

    Article  PubMed  Google Scholar 

  34. Wang H, Li WS, Shi DJ, Ye ZP, Tai F, He HY, Liang CF, Gong J, Guo Y (2008) Correlation of MMP(1) and TIMP (1) expression with pituitary adenoma fibrosis. J Neuro-Oncol 90:151–156. https://doi.org/10.1007/s11060-008-9647-9

    Article  CAS  Google Scholar 

  35. Wei L, Lin SA, Fan K, Xiao D, Hong J, Wang S (2015) Relationship between pituitary adenoma texture and collagen content revealed by comparative study of MRI and pathology analysis. Int J Clin Exp Med 8:12898–12905

    PubMed  PubMed Central  Google Scholar 

  36. Yiping L, Ji X, Daoying G, Bo Y (2016) Prediction of the consistency of pituitary adenoma: a comparative study on diffusion-weighted imaging and pathological results. J Neuroradiol = Journal de Neuroradiologie 43:186–194. https://doi.org/10.1016/j.neurad.2015.09.003

    Article  PubMed  Google Scholar 

  37. Yiping L, Hui L, Kun Z, Daoying G, Bo Y (2014) Diffusion-weighted imaging of the sellar region: a comparison study of BLADE and single-shot echo planar imaging sequences. Eur J Radiol 83:1239–1244. https://doi.org/10.1016/j.ejrad.2014.03.011

    Article  PubMed  Google Scholar 

  38. Yunoue S, Tokimura H, Tominaga A, Fujio S, Karki P, Usui S, Kinoshita Y, Habu M, Moinuddin FM, Hirano H, Arita K (2014) Transsphenoidal surgical treatment of pituitary adenomas in patients aged 80 years or older. Neurosurg Rev 37:269–276; discussion 276-267. https://doi.org/10.1007/s10143-013-0509-3

    Article  PubMed  Google Scholar 

  39. Zada G, Yashar P, Robison A, Winer J, Khalessi A, Mack WJ, Giannotta SL (2013) A proposed grading system for standardizing tumor consistency of intracranial meningiomas. Neurosurg Focus 35:E1. https://doi.org/10.3171/2013.8.Focus13274

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Zhongliang Hu and Dr. Zhenghao Deng of the Department of Pathology at Xiangya hospital for their assistance with the histopathological assessment.

Funding

This study was funded by the Natural Science Foundation of Hunan Province of China (Grant No.2018jj6139) and the Innovation-oriented Provinces Construction Project of Hunan Province (Grant No. 2019ZK4004).

Author information

Authors and Affiliations

Authors

Contributions

W D, Z H, and ZY L contributed to the study conception and design. W D, Z H, and MY Z collected clinical data.GF Z and L L collected radiological data. W D and Z H performed the statistical analysis and drafted the manuscript. All authors contributed to the interpretation of results, all revised the manuscript critically for important intellectual content, and all approved the final manuscript. ZY L is the guarantor.

Corresponding author

Correspondence to Zhenyan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The current study was approved by the ethical committee of our hospital.

Consent to participate

Informed consent was obtained from all enrolled patients.

Consent for publication

All authors of this manuscript consent to the publication of the manuscript in Neurosurgical Review journal.

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Co-first author: Wei Ding and Zheng Huang contribute equally to this work.

Supplementary information

ESM 1

(DOC 539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Huang, Z., Zhou, G. et al. Diffusion-weighted imaging for predicting tumor consistency and extent of resection in patients with pituitary adenoma. Neurosurg Rev 44, 2933–2941 (2021). https://doi.org/10.1007/s10143-020-01469-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-020-01469-y

Keywords

Navigation