Skip to main content

Advertisement

Log in

Management of unruptured intracranial aneurysms: correlation of UIATS, ELAPSS, and PHASES with referral center practice

  • Original Article
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Concordance between the Unruptured Intracranial Aneurysm Treatment Score (UIATS), Earlier Subarachnoid Hemorrhage, Location, Age, Population, Size, Shape (ELAPSS) score, and Population, Hypertension, Age, Size, Earlier Subarachnoid Hemorrhage, Site (PHASES) score with real-world management decisions in unruptured intracranial aneurysms (UIAs) remains unclear, especially in current practice. This study aimed to investigate this concordance, while developing an optimal model predictive of recent decision practices at a quaternary referral center. A prospective database of patients presenting with UIAs to our institution from January 1 to December 31, 2018, was used. Concordance between the scores and real-world management decisions on every UIA was assessed. Complications and length of stay (LOS) were compared between aneurysms in the UIATS-recommended treatment and observation groups. A subgroup analysis of concordance was also conducted among junior and senior surgeons. An optimal logistic regression model predictive of real-world decisions was also derived. The cohort consisted of 198 patients with 271 UIAs, of which 42% were treated. The UIATS demonstrated good concordance with an AUC of 0.765. Of the aneurysms in the UIATS-recommended “observation” group, 22% were discordantly treated. The ELAPSS score demonstrated good discrimination (AUC = 0.793), unlike the PHASES score (AUC = 0.579). Endovascular treatment rates, complications, and LOS were similar between aneurysms in the UIATS-recommended treatment and observation groups. Similar concordance was obtained among junior and senior surgeons. The optimal predictive model consisted of several significantly associated variables and had an AUC of 0.942. Cerebrovascular specialists may be treating aneurysms slightly more than these scores would recommend, independently of years in practice. Wide variation still exists in management practices of UIAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available upon reasonable request from the corresponding author.

References

  1. Backes D, Rinkel GJE, Greving JP, Velthuis BK, Murayama Y, Takao H, Ishibashi T, Igase M, TerBrugge KG, Agid R, Jaaskelainen JE, Lindgren AE, Koivisto T, von Und Zu Fraunberg M, Matsubara S, Moroi J, Wong GKC, Abrigo JM, Igase K, Matsumoto K, Wermer MJH, van Walderveen MAA, Algra A, Vergouwen MDI (2017) ELAPSS score for prediction of risk of growth of unruptured intracranial aneurysms. Neurology 88:1600–1606. https://doi.org/10.1212/WNL.0000000000003865

    Article  PubMed  Google Scholar 

  2. Bijlenga P, Gondar R, Schilling S, Morel S, Hirsch S, Cuony J, Corniola M-V, Perren F, Rufenacht D, Schaller K (2017) PHASES score for the management of intracranial aneurysm: a cross-sectional population-based retrospective study. Stroke 48:2105–2112. https://doi.org/10.1161/STROKEAHA.117.017391

    Article  PubMed  Google Scholar 

  3. Brown RDJ, Broderick JP (2014) Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening. Lancet Neurol 13:393–404. https://doi.org/10.1016/S1474-4422(14)70015-8

    Article  PubMed  Google Scholar 

  4. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40:373–383. https://doi.org/10.1016/0021-9681(87)90171-8

    Article  CAS  PubMed  Google Scholar 

  5. Eddleman CS, Hurley MC, Bendok BR, Batjer HH (2009) Cavernous carotid aneurysms: to treat or not to treat? Neurosurg Focus 26:E4. https://doi.org/10.3171/2009.2.FOCUS0920

    Article  PubMed  Google Scholar 

  6. Etminan N, Rinkel GJ (2016) Unruptured intracranial aneurysms: development, rupture and preventive management. Nat Rev Neurol 12:699–713. https://doi.org/10.1038/nrneurol.2016.150

    Article  PubMed  Google Scholar 

  7. Etminan N, Beseoglu K, Barrow DL, Bederson J, Brown RDJ, Connolly ESJ, Derdeyn CP, Hanggi D, Hasan D, Juvela S, Kasuya H, Kirkpatrick PJ, Knuckey N, Koivisto T, Lanzino G, Lawton MT, LeRoux P, McDougall CG, Mee E, Mocco J, Molyneux A, Morgan MK, Mori K, Morita A, Murayama Y, Nagahiro S, Pasqualin A, Raabe A, Raymond J, Rinkel GJE, Rufenacht D, Seifert V, Spears J, Steiger H-J, Steinmetz H, Torner JC, Vajkoczy P, Wanke I, Wong GKC, Wong JH, Macdonald RL (2014) Multidisciplinary consensus on assessment of unruptured intracranial aneurysms: proposal of an international research group. Stroke 45:1523–1530. https://doi.org/10.1161/STROKEAHA.114.004519

    Article  PubMed  Google Scholar 

  8. Etminan N, Brown RD, Beseoglu K, Juvela S, Raymond J, Morita A, Torner JC, Derdeyn CP, Raabe A, Mocco J (2015) The unruptured intracranial aneurysm treatment score a multidisciplinary consensus. Neurology 85:881–889. https://doi.org/10.1212/WNL.0000000000001891

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fahlstrom A, Nittby Redebrandt H, Zeberg H, Bartek JJ, Bartley A, Tobieson L, Erkki M, Hessington A, Troberg E, Mirza S, Tsitsopoulos PP, Marklund N (2019) A grading scale for surgically treated patients with spontaneous supratentorial intracerebral hemorrhage: the Surgical Swedish ICH Score. J Neurosurg 1–8. https://doi.org/10.3171/2019.5.JNS19622

  10. Fargen KM, Soriano-Baron HE, Rushing JT, Mack W, Mocco J, Albuquerque F, Ducruet AF, Mokin M, Linfante I, Wolfe SQ, Wilson JA, Hirsch JA (2018) A survey of intracranial aneurysm treatment practices among United States physicians. J Neurointerv Surg 10:44–49. https://doi.org/10.1136/neurintsurg-2016-012808

    Article  PubMed  Google Scholar 

  11. Greving JP, Wermer MJH, Brown RDJ, Morita A, Juvela S, Yonekura M, Ishibashi T, Torner JC, Nakayama T, Rinkel GJE, Algra A (2014) Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol 13:59–66. https://doi.org/10.1016/S1474-4422(13)70263-1

    Article  PubMed  Google Scholar 

  12. Guan J, Karsy M, Couldwell WT, Schmidt RH, Taussky P, MacDonald JD, Park MS (2017) Factors influencing management of unruptured intracranial aneurysms: an analysis of 424 consecutive patients. J Neurosurg 127:96–101. https://doi.org/10.3171/2016.7.JNS16975

    Article  PubMed  Google Scholar 

  13. Hernandez-Duran S, Mielke D, Rohde V, Malinova V (2018) The application of the unruptured intracranial aneurysm treatment score: a retrospective, single-center study. Neurosurg Rev 41:1021–1028. https://doi.org/10.1007/s10143-018-0944-2

    Article  PubMed  Google Scholar 

  14. Khan MO, Toro Arana V, Rubbert C, Cornelius JF, Fischer I, Bostelmann R, Mijderwijk H-J, Turowski B, Steiger H-J, May R, Petridis AK (2020) Association between aneurysm hemodynamics and wall enhancement on 3D vessel wall MRI. J Neurosurg:1–11. https://doi.org/10.3171/2019.10.JNS191251

  15. Lindgren AE, Koivisto T, Bjorkman J, von Und Zu Fraunberg M, Helin K, Jaaskelainen JE, Frosen J (2016) Irregular shape of intracranial aneurysm indicates rupture risk irrespective of size in a population-based cohort. Stroke 47:1219–1226. https://doi.org/10.1161/STROKEAHA.115.012404

    Article  PubMed  Google Scholar 

  16. Lv N, Karmonik C, Chen S, Wang X, Fang Y, Huang Q, Liu J (2019) Relationship between aneurysm wall enhancement in vessel wall magnetic resonance imaging and rupture risk of unruptured intracranial aneurysms. Neurosurgery 84:E385–E391. https://doi.org/10.1093/neuros/nyy310

    Article  PubMed  Google Scholar 

  17. Malhotra A, Wu X, Geng B, Hersey D, Gandhi D, Sanelli P (2018) Management of small unruptured intracranial aneurysms: a survey of neuroradiologists. AJNR Am J Neuroradiol 39:875–880. https://doi.org/10.3174/ajnr.A5631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McDonald JS, Carter RE, Layton KF, Mocco J, Madigan JB, Tawk RG, Hanel RA, Roy SS, Cloft HJ, Klunder AM, Suh SH, Kallmes DF (2013) Interobserver variability in retreatment decisions of recurrent and residual aneurysms. AJNR Am J Neuroradiol 34:1035–1039. https://doi.org/10.3174/ajnr.A3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morita A, Kirino T, Hashi K, Aoki N, Fukuhara S, Hashimoto N, Nakayama T, Sakai M, Teramoto A, Tominari S, Yoshimoto T (2012) The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med 366:2474–2482. https://doi.org/10.1056/NEJMoa1113260

    Article  PubMed  Google Scholar 

  20. Neyazi B, Sandalcioglu IE, Maslehaty H (2019) Evaluation of the risk of rupture of intracranial aneurysms in patients with aneurysmal subarachnoid hemorrhage according to the PHASES score. Neurosurg Rev 42:489–492. https://doi.org/10.1007/s10143-018-0989-2

    Article  PubMed  Google Scholar 

  21. Portet S (2020) A primer on model selection using the Akaike Information Criterion. Infect Dis Model 5:111–128. https://doi.org/10.1016/j.idm.2019.12.010

    Article  PubMed  PubMed Central  Google Scholar 

  22. Qi H, Liu X, Liu P, Yuan W, Liu A, Jiang Y, Li Y, Sun J, Chen H (2019) Complementary roles of dynamic contrast-enhanced MR imaging and postcontrast vessel wall imaging in detecting high-risk intracranial aneurysms. AJNR Am J Neuroradiol 40:490–496. https://doi.org/10.3174/ajnr.A5983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ravindra VM, de Havenon A, Gooldy TC, Scoville J, Guan J, Couldwell WT, Taussky P, MacDonald JD, Schmidt RH, Park MS (2018) Validation of the unruptured intracranial aneurysm treatment score: comparison with real-world cerebrovascular practice. J Neurosurg 129:100–106. https://doi.org/10.3171/2017.4.JNS17548

    Article  PubMed  Google Scholar 

  24. Skodvin TO, Evju O, Helland CA, Isaksen JG (2018) Rupture prediction of intracranial aneurysms: a nationwide matched case-control study of hemodynamics at the time of diagnosis. J Neurosurg 129:854–860. https://doi.org/10.3171/2017.5.JNS17195

    Article  PubMed  Google Scholar 

  25. Skodvin TO, Evju O, Sorteberg A, Isaksen JG (2019) Prerupture intracranial aneurysm morphology in predicting risk of rupture: a matched case-control study. Neurosurgery 84:132–140. https://doi.org/10.1093/neuros/nyy010

    Article  PubMed  Google Scholar 

  26. Smedley A, Yusupov N, Almousa A, Solbach T, Toma AK, Grieve JP (2018) Management of incidental aneurysms: comparison of single centre multi-disciplinary team decision making with the unruptured incidental aneurysm treatment score. Br J Neurosurg 32:536–540. https://doi.org/10.1080/02688697.2018.1468019

    Article  PubMed  Google Scholar 

  27. Thompson BG, Brown RDJ, Amin-Hanjani S, Broderick JP, Cockroft KM, Connolly ESJ, Duckwiler GR, Harris CC, Howard VJ, Johnston SCC, Meyers PM, Molyneux A, Ogilvy CS, Ringer AJ, Torner J (2015) Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 46:2368–2400. https://doi.org/10.1161/STR.0000000000000070

    Article  PubMed  Google Scholar 

  28. Tulamo R, Frosen J, Hernesniemi J, Niemela M (2018) Inflammatory changes in the aneurysm wall: a review. J Neurointerv Surg 10:i58–i67. https://doi.org/10.1136/jnis.2009.002055.rep

    Article  PubMed  Google Scholar 

  29. Varble N, Rajabzadeh-Oghaz H, Wang J, Siddiqui A, Meng H, Mowla A (2017) Differences in morphologic and hemodynamic characteristics for “PHASES-based” intracranial aneurysm locations. AJNR Am J Neuroradiol 38:2105–2110. https://doi.org/10.3174/ajnr.A5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vercelli G, Sorenson TJ, Aljobeh AZ, Vine R, Lanzino G (2019) Cavernous sinus aneurysms: risk of growth over time and risk factors. J Neurosurg 132:1–5. https://doi.org/10.3171/2018.8.JNS182029

    Article  Google Scholar 

  31. Xiang J, Yu J, Choi H, Dolan Fox JM, Snyder KV, Levy EI, Siddiqui AH, Meng H (2015) Rupture Resemblance Score (RRS): toward risk stratification of unruptured intracranial aneurysms using hemodynamic-morphological discriminants. J Neurointerv Surg 7:490–495. https://doi.org/10.1136/neurintsurg-2014-011218

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Given the retrospective nature of this study, patient consent was waived.

Ethical approval

This study was approved by the Johns Hopkins Medicine Institutional Review Board.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feghali, J., Gami, A., Caplan, J.M. et al. Management of unruptured intracranial aneurysms: correlation of UIATS, ELAPSS, and PHASES with referral center practice. Neurosurg Rev 44, 1625–1633 (2021). https://doi.org/10.1007/s10143-020-01356-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-020-01356-6

Keywords

Navigation