Skip to main content

Advertisement

Log in

Spinal vascular malformations: treatment strategies and outcome

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Spinal vascular malformations (SVMs) are a heterogeneous group that can cause acute, subacute, or chronic spinal cord dysfunction. The majority of the patients present to neurosurgical attention after a protracted course with severe neurological dysfunction. Spinal vascular lesions comprise approximately 3–4 % of all intradural spinal lesions. They are pathologically similar to their intracranial counterparts, but their clinical impact is often comparatively worse. Early, correct recognition of the pathology is mandatory to halt the progression of the disease and minimize permanent spinal cord injury. The first clinical observation of a SVM was published in 1890, but it was not until 1914 that the first successful surgical treatment of a spinal vascular malformation was reported. Intervention—either by microsurgical or endovascular means—aims to halt or reverse the progressive neurological deterioration by eliminating flow through the abnormal fistulous or nidal connections, and restoring normal spinal cord perfusion and intravascular pressures. In fact, complex spinal arteriovenous malformations (AVMs) and arteriovenous fistulas (AVFs) frequently require a multimodality approach that utilizes both microsurgery and endovascular embolization effectively. The goal of this review is to describe the various types of vascular malformations of the spine, their pathophysiology, clinical presentation, treatment strategies, and outcome. For purposes of discussion on the current manuscript, vascular malformations of the spine were divided into arteriovenous fistulas (AVFs) and arteriovenous malformations (AVMs). Spinal cord aneurysms are extremely rare, and the majority of the lesions that come to the neurosurgeon’s attention are concomitant to a spinal AVM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akopov S, Schievink W (2002) History of spinal cord vascular malformations and their treatment. Semin Cerebrovasc Dis Stroke 2:178–185. doi: 10.1053/scds.2002.128825

  2. Aminoff MJ, Logue V (1974) The prognosis of patients with spinal vascular malformations. Brain 97:211–8

  3. Aminoff MJ, Logue V (1974) Clinical features of spinal vascular malformations. Brain 97:197–210

    Article  CAS  PubMed  Google Scholar 

  4. Atkinson J, Piepgras D (2002) Surgical treatment of spinal cord arteriovenous malformations and arteriovenous fistulas. Semin Cerebrovasc Dis Stroke 2:201–208. doi:10.1053/scds.2002.127657

    Article  Google Scholar 

  5. Black P (2006) Spinal vascular malformations: an historical perspective. Neurosurg Focus 21:1–7. doi:10.3171/foc.2006.21.6.2

    Article  Google Scholar 

  6. Boström A, Krings T, Hans FJ, Schramm J, Thron AK, Gilsbach JM (2009) Spinal glomus-type arteriovenous malformations: microsurgical treatment in 20 cases. J Neurosurg Spine 10(5):423–9

  7. Casasco A, Guimaraens L, Senturk C, Cotroneo E, Gigli R, Theron J (2012) Endovascular treatment of cervical giant perimedullary arteriovenous fistulas. Neurosurgery 70:141–9. doi:10.1227/NEU.0b013e31822ec19e, discussion 149

    Article  PubMed  Google Scholar 

  8. Chaloupka JC (2002) Future directions in the evaluation and management of spinal cord vascular malformations. Semin Cerebrovasc Dis Stroke 2:245–56

    Article  Google Scholar 

  9. Di Chiro G, Wener L (1973) Angiography of the spinal cord. A review of contemporary techniques and applications. J Neurosurg 39:1–29. doi:10.3171/jns.1973.39.1.0001

    Article  PubMed  Google Scholar 

  10. Cho W-S, Kim K-J, Kwon O-K, Kim CH, Kim J, Han MH, Chung CK (2013) Clinical features and treatment outcomes of the spinal arteriovenous fistulas and malformations. J Neurosurg Spine 19:207–216

    Article  PubMed  Google Scholar 

  11. Connolly ES, Zubay GP, McCormick PC, Stein BM (1998) The posterior approach to a series of glomus (Type II) intramedullary spinal cord arteriovenous malformations. Neurosurgery 42(4):774–85

  12. Corkill RA, Mitsos AP, Molyneux AJ (2007) Embolization of spinal intramedullary arteriovenous malformations using the liquid embolic agent, Onyx: a single-center experience in a series of 17 patients. J Neurosurg Spine 7:478–85. doi:10.3171/SPI-07/11/478

    Article  PubMed  Google Scholar 

  13. da Costa L, Dehdashti A, TerBrugge KG (2009) Spinal cord vascular shunts: spinal cord vascular malformations and dural arteriovenous fistulas. Neurosurg Focus 26:E6. doi:10.3171/FOC.200

    Article  PubMed  Google Scholar 

  14. Du J, Ling F, Chen M, Zhang H (2009) Clinical characteristic of spinal vascular malformation in pediatric patients. Childs Nerv Syst 25:473–8. doi:10.1007/s00381-008-0737-y

    Article  PubMed  Google Scholar 

  15. Ducruet AF, Crowley RW, McDougall CG, Albuquerque FC (2013) Endovascular management of spinal arteriovenous malformations. J Neurointerv Surg 5:605–11. doi:10.1136/neurintsurg-2012-010487

    Article  PubMed  Google Scholar 

  16. Foix C, Alajouanine T (1926) Subacute necrotic myelitis, slowly progressive central myelitis with vascular hyperplasia, and slowly ascending, increasingly flaccid amyotrophic paraplegia accompanied by albuminocytologic dissociation [in French]. Rev Neurol 33:1–42

    Google Scholar 

  17. Fugate JE, Lanzino G, Rabinstein AA (2012) Clinical presentation and prognostic factors of spinal dural arteriovenous fistulas: an overview. Neurosurg Focus 32:E17

    Article  PubMed  Google Scholar 

  18. Gross BA, Du R (2013) Spinal glomus (type II) arteriovenous malformations: a pooled analysis of hemorrhage risk and results of intervention. Neurosurgery 72:25–32. doi:10.1227/NEU.0b013e318276b5d3, discussion 32

    Article  PubMed  Google Scholar 

  19. Gross BA, Du R (2014) Spinal juvenile (type III) extradural-intradural arteriovenous malformations. J Neurosurg Spine 20:452–458

    Article  PubMed  Google Scholar 

  20. Hassler W, Thron A (1994) Flow velocity and pressure measurements in spinal dural arteriovenous fistulas. Neurosurg Rev 17:29–36

    Article  CAS  PubMed  Google Scholar 

  21. Hassler W, Thron A, Grote EH (1989) Hemodynamics of spinal dural arteriovenous fistulas. An intraoperative study. J Neurosurg 70:360–70. doi:10.3171/jns.1989.70.3.0360

    Article  CAS  PubMed  Google Scholar 

  22. Heros RC, Debrun GM, Ojemann RG, Lasjaunias PL, Naessens PJ (1986) Direct spinal arteriovenous fistula: a new type of spinal AVM. Case report. J Neurosurg 64:134–9. doi:10.3171/jns.1986.64.1.0134

    Article  CAS  PubMed  Google Scholar 

  23. Jahan R, Vinuela F (2002) Vascular anatomy, pathophysiology, and classification of vascular malformations of the spinal cord. Semin Cerebrovasc Dis Stroke 2:186–200. doi:10.1053/scds.2002.127656

    Article  Google Scholar 

  24. Kalani MYS, Ahmed AS, Martirosyan NL, Cronk K, Moon K, Albuquerque FC, McDougall CG, Spetzler RF, Bristol RE (2011) Surgical and endovascular treatment of pediatric spinal arteriovenous malformations. World Neurosurg 78:348–54. doi:10.1016/j.wneu.2011.10.036

    Article  PubMed  Google Scholar 

  25. Kendall BE, Logue V (1977) Spinal epidural angiomatous malformations draining into intrathecal veins. Neuroradiology 13:181–9

    Article  CAS  PubMed  Google Scholar 

  26. Kim LJ, Spetzler RF (2006) Classification and surgical management of spinal arteriovenous lesions: arteriovenous fistulae and arteriovenous malformations. Neurosurgery 59:S195–201. doi:10.1227/01.NEU.0000237335.82234.CE, discussion S3–13

    PubMed  Google Scholar 

  27. Kiyosue H, Tanoue S, Okahara M, Hori Y, Kashiwagi J, Mori H (2013) Spinal ventral epidural arteriovenous fistulas of the lumbar spine: angioarchitecture and endovascular treatment. Neuroradiology 55:327–336. doi:10.1007/s00234-012-1130-9

    Article  PubMed  PubMed Central  Google Scholar 

  28. Krayenbühl H, Yaşargil MG, McClintock HG (1969) Treatment of spinal cord vascular malformations by surgical excision. J Neurosurg 30:427–35. doi:10.3171/jns.1969.30.4.0427

    Article  PubMed  Google Scholar 

  29. Krings T, Geibprasert S (2009) Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 30:639–48. doi:10.3174/ajnr.A1485

    Article  CAS  PubMed  Google Scholar 

  30. Krings T, Mull M, Gilsbach JM, Thron A (2005) Spinal vascular malformations. Eur Radiol 15:267–78. doi:10.1007/s00330-004-2510-2

    Article  PubMed  Google Scholar 

  31. Krings T, Thron AK, Geibprasert S, Agid R, Hans FJ, Lasjaunias PL, Reinges MHT (2010) Endovascular management of spinal vascular malformations. Neurosurg Rev 33:1–9. doi:10.1007/s10143-009-0204-6

    Article  PubMed  Google Scholar 

  32. Larsen DW, Halbach VV, Teitelbaum GP, McDougall CG, Higashida RT, Dowd CF, Hieshima GB (1995) Spinal dural arteriovenous fistulas supplied by branches of the internal iliac arteries. Surg Neurol 43:35–40, discussion 40–1

    Article  CAS  PubMed  Google Scholar 

  33. Lindenholz A, TerBrugge KG, van Dijk JMC, Farb RI (2014) The accuracy and utility of contrast-enhanced MR angiography for localization of spinal dural arteriovenous fistulas: the Toronto experience. Eur Radiol 2885–2894. doi:10.1007/s00330-014-3307-6

  34. Morgan MK (1999) Outcome from treatment for spinal arteriovenous malformation. Neurosurg Clin N Am 10:133–19

    Google Scholar 

  35. Morgan MK, Marsh WR (1989) Management of spinal dural arteriovenous malformations. J Neurosurg 70:832–6. doi:10.3171/jns.1989.70.6.0832

    Article  CAS  PubMed  Google Scholar 

  36. Morris JM (2012) Imaging of dural arteriovenous fistula. Radiol Clin N Am 50:823–39. doi:10.1016/j.rcl.2012.04.011

    Article  PubMed  Google Scholar 

  37. Narvid J, Hett SW, Larsen D, Neuhaus J, Singh TP, McSwain H, Lawton MT, Dowd CF (2008) Spinal dural arteriovenous fistulae: clinical features and long-term results. Neurosurgery 62:159–167. doi:10.1227/01.NEU.0000296997.82103.47

    Article  PubMed  Google Scholar 

  38. Niimi Y, Sala F, Deletis V, Setton A, De Camargo AB, Berenstein A (2004) Neurophysiologic monitoring and pharmacologic provocative testing for embolization of spinal cord arteriovenous malformations. AJNR Am J Neuroradiol 25:1131–1138

    PubMed  Google Scholar 

  39. Oldfield E (2002) Surgical treatment of spinal dural arteriovenous fistulas. Semin Cerebrovasc Dis Stroke 2:209–226. doi:10.1053/scds.2002.127658

    Article  Google Scholar 

  40. P M (1928) Le coup de poignard rachidien. Symptôme initial de certaines hémorragies sous-arachnoïdiennes. Essai sur les hémorragies méningées spinales. Press Med 964–966

  41. Patsalides A, Santillan A, Knopman J, Tsiouris AJ, Riina HA, Gobin YP (2011) Endovascular management of spinal dural arteriovenous fistulas. J Neurointerv Surg 3:80–4. doi:10.1136/jnis.2010.003178

    Article  PubMed  Google Scholar 

  42. Potharaju M, John R, Venkataraman M, Gopalakrishna K, Subramanian B (2014) Stereotactic radiosurgery results in three cases of intramedullary spinal cord arteriovenous malformations. Spine J. doi:10.1016/j.spinee.2014.02.025

    PubMed  Google Scholar 

  43. Prestigiacomo CJ, Niimi Y, Setton A, Berenstein A (2003) Three-dimensional rotational spinal angiography in the evaluation and treatment of vascular malformations. AJNR Am J Neuroradiol 24:1429–1435

    PubMed  Google Scholar 

  44. Ramanathan D, Levitt MR, Sekhar LN, Kim LJ, Hallam DK, Ghodke BV (2014) Management of spinal epidural arteriovenous fistulas: interventional techniques and results. J Neurointerv Surg 6:144–9. doi:10.1136/neurintsurg-2012-010622

    Article  PubMed  Google Scholar 

  45. Rangel-Castilla L, Russin J, Zaidi HA, Martinez-del-Campo E, Park MS, Albuquerque FC, McDougall CG, Nakaji P, Spetzler RF (2014) Contemporary management of spinal AVFs and AVMs: lessons learned from 110 cases. Neurosurg Focus 37:E14

    Article  PubMed  Google Scholar 

  46. Rodesch G, Hurth M, Alvarez H, Tadié M, Lasjaunias PL (2002) classification of spinal cord arteriovenous shunts: proposal for a reppraisal - the Bicetre experience with 155 consecutive patients treated between 1981 and 1999. Neurosurgery 51:374–380. doi:10.1227/01.NEU.0000020573.01917.22

    PubMed  Google Scholar 

  47. Rodesch G, Hurth M, Ducot B, Alvarez H, David P, Tadie M, Lasjaunias P (2003) embolization of spinal cord arteriovenous shunts: morphological and clinical follow-up and results—review of 69 consecutive cases. Neurosurgery 53:40–50. doi:10.1227/01.NEU.0000068701.25600.A1

    Article  PubMed  Google Scholar 

  48. Rodesch G, Lasjaunias P (2003) Spinal cord arteriovenous shunts: from imaging to management. Eur J Radiol 46:221–232. doi:10.1016/S0720-048X(03)00093-7

    Article  CAS  PubMed  Google Scholar 

  49. Rosenblum B, Oldfield E, Doppman JL, Di Chiro G (1987) Spinal arteriovenous malformations: a comparison of dural arteriovenous fistulas and intradural AVM’s in 81 patients. J Neurosurg 67:795–802

    Article  CAS  PubMed  Google Scholar 

  50. Si-jia G, Meng-wei Z, Xi-ping L, Yu-shen Z, Jing-hong L, Zhong-hui W, Pei-zhuo Z, Qiang S, Qiang W, Chuan-sheng L, Ke X (2009) The clinical application studies of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations. Eur J Radiol 71:22–8. doi:10.1016/j.ejrad.2008.04.005

    Article  PubMed  Google Scholar 

  51. Sinclair J, Chang SD, Gibbs IC, Adler JR (2006) Multisession CyberKnife radiosurgery for intramedullary spinal cord arteriovenous malformations. Neurosurgery 58:1081–9. doi:10.1227/01.NEU.0000215891.25153.BA, discussion 1081–9

    Article  PubMed  Google Scholar 

  52. Spetzler RF, Detwiler PW, Riina HA, Porter RW (2002) Modified classification of spinal cord vascular lesions. J Neurosurg Spine 96:145–156. doi:10.3171/spi.2002.96.2.0145

    Article  Google Scholar 

  53. Steinmetz MP, Chow MM, Krishnaney AA, Andrews-Hinders D, Benzel EC, Masaryk TJ, Mayberg MR, Rasmussen PA (2004) Outcome after the treatment of spinal dural arteriovenous fistulae: a contemporary single-institution series and meta-analysis. Neurosurgery 55:77–88. doi:10.1227/01.NEU.0000126878.95006.0F

    Article  PubMed  Google Scholar 

  54. Tacconi L, Lopez Izquierdo BC, Symon L (1997) Outcome and prognostic factors in the surgical treatment of spinal dural arteriovenous fistulas. A long-term study. Br J Neurosurg 11:298–305

    Article  CAS  PubMed  Google Scholar 

  55. Velat G, Chang S, Abla A, Albuquerque FC, McDougall CG, Spetzler RF (2012) Microsurgical management of glomus spinal arteriovenous malformations: pial resection technique: clinical article. J Neurosurg Spine 16:523–531

    Article  PubMed  Google Scholar 

  56. Veznedaroglu E, Nelson PK, Jabbour PM, Rosenwasser RH (2006) Endovascular treatment of spinal cord arteriovenous malformations. Neurosurgery 59:S202–9. doi:10.1227/01.NEU.0000237409.28906.96, discussion S3–13

    PubMed  Google Scholar 

  57. Walsh DC, Zebian B, Tolias CM, Gullan RW (2014) Intraoperative indocyanine green video-angiography as an aid to the microsurgical treatment of spinal vascular malformations. Br J Neurosurg 28:259–66. doi:10.3109/02688697.2013.829556

    Article  PubMed  Google Scholar 

  58. Watson JC, Oldfield E (1999) The surgical management of spinal dural vascular malformations. Neurosurg Clin N Am 10:73–87

    CAS  PubMed  Google Scholar 

  59. Willinsky R, Lasjaunias PL, Terbrugge K, Hurth M (1990) Angiography in the investigation of spinal dural arteriovenous fistula. Neuroradiology 32:114–116

    Article  CAS  PubMed  Google Scholar 

  60. Wilson DA, Abla AA, Uschold TD, McDougall CG, Albuquerque FC, Spetzler RF (2012) Multimodality treatment of conus medullaris arteriovenous malformations: 2 decades of experience with combined endovascular and microsurgical treatments. Neurosurgery 71:100–8. doi:10.1227/NEU.0b013e318256c042

    Article  PubMed  Google Scholar 

  61. Wyburn-Mason R (1943) The vascular abnormalities and tumours of the spinal cord and its membranes. St. Louis

  62. Yaşargil MG (1970) Surgery of vascular lesions of the spinal cord with the microsurgical technique. Clin Neurosurg 17:257–65

    PubMed  Google Scholar 

  63. Zozulya YP, Slink’ko E, Al-Qashqish II (2006) Spinal arteriovenous malformations: new classification and surgical treatment. Neurosurg Focus. 20(5):E7

Download references

Acknowledgments

The authors would like to thank Suzanne “Jorlam” Truex, medical illustrator, for her invaluable assistance in transforming such an arid topic through her unique artistic drawings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno C. Flores.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Comments

Biagia La Pira, Giuseppe Lanzino, Rochester, USA

The authors provide a comprehensive summary on spinal vascular malformations. We like to make a few comments on the type 1 spinal dural arteriovenous fistulas (SDAVFs), which represent the most common spinal vascular malformation. Unfortunately, despite advances and widespread utilization of noninvasive neuroimaging, the diagnosis continues to be delayed [1, 7]. When we compared the time interval from symptom onset to final diagnosis between those patients treated from 1986 to 1999 and those treated between 2000 and 2008, we were surprised to find that the median delay in diagnosis had not changed over the time interval being 12 months in both periods [7]. At times, delays in diagnosis are related to the difficulty of performing a complete spinal angiography in some of these patients who are often elderly with advanced atherosclerosis. We routinely use magnetic resonance angiography (MRA) as a screening tool helpful in narrowing down the segments most likely bearing the fistula [3]. In this manner, catheter angiography can be started on the segments in question. In the exceptional cases where catheter angiography cannot localize the fistula, advanced MRI techniques such as time-resolved MRA and PC-Fiesta imaging can be helpful in identifying the site of the fistula [6].

As noted by the authors, type 1 DAVFs have a striking male predominance (usually in the 7th and 8th decade of life). The presence of clinical symptoms and MRI findings suspicious for a type I DAVFs in a young patient or in a woman, should raise the suspicion of an epidural fistula or a paraspinal AVM with secondary retrograde intradural venous drainage [2]. With increased awareness of this entity and better imagine techniques, epidural AVFs now account for about 30 % of the spinal vascular malformations that we see. Differentiation between an epidural AVF and a type 1 AVF is an important one, as epidural fistulas are amenable to successful and permanent obliteration with endovascular trans-arterial embolization [5]. Moreover, epidural AVFs are often more difficult to obliterate surgically then the classic type I SDAF because the AV shunt is often located in the ventral epidural venous plexus.

After complete obliteration of a type 1 DAVF, the degree of clinical improvement is highly variable. The vast majority of patients experience some degree of improvement of motor function. As noted by the authors of this review, improvement of sensory function and sphincter control is less dramatic. Interestingly, there is no correlation between the degree and pattern of improvement of signal changes on MRI and the degree of clinical improvement [4]. Resolution of the flow voids on MRI and of serpiginous vessels on MRA is an excellent predictor of complete fistula obliteration [4], and in straightforward cases, we rarely perform a postoperative catheter angiography after surgical obliteration.

After successful treatment of a type I DAVF, it is not uncommon in patients who had presented with myelopathy to complain of delayed subjective recurrence of symptoms in association with an intercurrent systemic illness. This is usually related to the loss of the ability to compensate for the lost function in the presence of an intercurrent systemic illness and not to the recurrence of the fistula. Similarly, patients can report a subjective sense of increasing weakness and fatigability 6 to 18 months after successful treatment. This is often related to increased muscular tone which occur as a result of some degree of “spinal cord healing.” These symptoms usually improve with pharmacological treatment of the spasticity. It is important to warn patients about these possible “setbacks” and their significance as to avoid excessive worrying and unnecessary expensive imaging studies.

References

1. Brinjikji W, Nasr DM, Morris JM, Rabinstein AA, Lanzino G. (2015 Sep 3) Clinical outcomes of patients with delayed diagnosis of spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol. [Epub ahead of print]

2. Brinjikji W, Yin R, Nasr DM, Lanzino G. (2016 Jan 20) Spinal epidural fistulas. J Neurointerv Surg. [Epub ahead of print]

3. Gilbertson J, Miller G, Goldman M, Marsh W. (1995) Spinal dural arteriovenous fistulas: MR and myelographic findings. AJNR Am J Neuroradiol. 16; (10): 2049-2057

4. Kaufmann TJ, MOrris JM, Saladino A, Mandreakar JN, Lanzino G. (2011) Magnetic resonance imaging findings in treated spinal dural arteriovenous fistulas: lack of correlation with clinical outcomes. J Neurosurg Spine 14:548-554.

5. Lanzino G, D’Urso PI, Kallmes DF, Cloft HJ. (2012) Onyx embolization of extradural spinal arteriovenous malformations with intradural venous drainage. Neurosurgery 70:329-333.

6. Morris JM, Kaufmann TJ, Campeau NG, Cloft HJ, Lanzino G. (2011) Volumetric myelographic magnetic resonance imaging to localize difficult to find spinal dural arteriovenous fistulas. J Neurosurg Spine 14:398-404

7. Saladino A, Atkinson JLD, Rabinstein AA, Piepgras DG, Marsh WR, Krauss WE, Kaufmann TJ, Lanzino G. (2010) Surgical Treatment of Spinal Dural Arteriovenous Fistulae: A Consecutive Series of 154 Patients. Neurosurgery 67:1350-1358.

Ryan Morton, Louis Kim, Seattle, USA

Flores et al. are to be congratulated for reporting a comprehensive update on the modern classification systems, treatment and management strategies, and outcomes data for spinal vascular malformations. They note that endovascular embolization with Onyx or nBCA is the treatment of choice for dAVF (with the exception of perimedullary or intradural ventral dAVF with single or small feeders) and often can result in cure. Even for spinal AVM, unlike its cranial counterpart, complete embolization can result in a durable cure and even partial embolization can improve neurological function. Before a proper treatment strategy can be developed, however, comprehensive spinal angiography must be performed. The authors dutifully note the obligation of the angiographer to image all of the thoracic intercostal and lumbar radicular arteries not only to look for any fistulous connection, but also to identify the artery of Adamkiewicz. Critical to comprehensive angiography, however, is knowing what to image when the thoracic and lumbar segmental arteries fail to show any fistulous connection. The authors mention multiple strategies including injecting the lateral sacral arteries, arterial supply to the cervical cord and posterior fossa, as well as the bilateral internal iliac arteries. These are very useful pearls to the article readership and are much appreciated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, B.C., Klinger, D.R., White, J.A. et al. Spinal vascular malformations: treatment strategies and outcome. Neurosurg Rev 40, 15–28 (2017). https://doi.org/10.1007/s10143-016-0713-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-016-0713-z

Keywords

Navigation