Skip to main content

Advertisement

Log in

Proliferation, migration, and invasion of human glioma cells exposed to fractionated radiotherapy in vitro

  • Original Article
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Radiotherapy is a well established treatment for malignant gliomas. This study describes the migration, proliferation, and invasion behaviour of two human glioma cell lines (GaMg and U-87 Mg) grown as multicellular tumour spheroids after radiotherapy. Migration and proliferation studies were performed using conventional and accelerated fractionation up to 60 Gy and 59.4 Gy, respectively. A dose-dependent growth and migratory response to irradiation independent of the type of fractionation was observed. A coculture system in which tumour spheroids were confronted with foetal rat brain aggregates was used for invasion studies. Marked invasion of the glioma spheroids into the brain aggregates occurred with or without radiotherapy. For the GaMg cells, flow cytometric DNA histograms after treatment with 10 Gy and 40 Gy showed an accumulation of cells in the G2/M phase of the cell cycle. Radiotherapy inhibits tumour cell growth and migration, but the invasiveness of the remaining tumour cells seems to be unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4A–C.
Fig. 5.
Fig. 6A, B.

Similar content being viewed by others

References

  1. Fine HA, Dear KBG, Loeffler JS, Black PMCL, Canellos GP (1993) Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer 71:2585–2597

    Article  CAS  PubMed  Google Scholar 

  2. Gutin PH, Levin VA (1983) Surgery, radiation, and chemotherapy in the treatment of malignant brain tumors. In: Thompson RA, Green JR (eds) Controversies in neurology. Raven, New York

  3. Weichselbaum RR, Epstein J, Little JB, Kornblith PL (1976) Inherent cellular radiosensitivity of human tumors of varying clinical curability. Am J Roentgenol Radium Ther Nucl Med 127:1027–1032

    Article  CAS  Google Scholar 

  4. Nirmala C, Rao JS, Ruifrok AC, Langford LA, Obeyesekere M (2001) Growth characteristics of glioblastoma spheroids. Int J Oncol 19:1109–1115

    CAS  PubMed  Google Scholar 

  5. Durand RE (1994) The influence of microenvironmental factors during cancer therapy. In Vivo 8:691–702

    CAS  PubMed  Google Scholar 

  6. Laerum OD, Nygaar SJ, Steine S, Mork SJ, Engebraaten O, Peraud A, Kleihues P, Ohgaki H (2001) Invasiveness in vitro and biological markers in human primary glioblastomas. J Neurooncol 54:1–8

    Article  CAS  PubMed  Google Scholar 

  7. Terzis AJA, Thorsen F, Heese O, Visted T, Bjerkvig R, Dahl O, Arnold H, Gundersen G (1997) Proliferation, migration and invasion of human glioma cells exposed to paclitaxel (Taxol) in vitro. Br J Cancer 75:1744–1752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Terzis AJA, Pedersen PH, Feuerstein BG, Arnold H, Bjerkvig R, Deen DF (1998) Effects of DFMO on glioma cell proliferation, migration and invasion in vitro. J Neurooncol 36:113–121

    Article  CAS  PubMed  Google Scholar 

  9. Akslen LA, Andersen KJ, Bjerkvig R (1988) Characteristics of human and rat glioma cells grown in a defined medium. Anticancer Res 8:797–804

    CAS  PubMed  Google Scholar 

  10. Yuhas JM, Li AP, Martinez AO, Ladman AJ (1977) A simplified method for production and growth of multicellular tumor spheroids. Cancer Res 37:3639–3643

    CAS  PubMed  Google Scholar 

  11. Mueller-Klieser WF, Freyer JP, Sutherland RM (1986) Influence of glucose and oxygen supply conditions on the oxygenation of multicellular spheroids. Br J Cancer 53:345–353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Sutherland RM (1986) Importance of critical metabolites and cellular interactions in the biology of microregions of tumors. Cancer 58:1668–1680

    Article  CAS  PubMed  Google Scholar 

  13. Bjerkvig R, Steinsvåg SK, Laerum OD (1986) Reaggregation of fetal rat brain cells in a stationary culture system 1: methodology and cell identification. In Vitro 22:180–192

    CAS  Google Scholar 

  14. Bjerkvig R (1986) Reaggregation of fetal rat brain cells in a stationary culture system 2: ultrastructural characterization. In Vitro 22:193–200

    CAS  Google Scholar 

  15. Gundersen HJG, Jensen EB (1984) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    Article  Google Scholar 

  16. Storme G, Mareel MM, De Bruyne G (1981) Influence of cell number on directional migration of MO4 cells in vitro. Arch Geschwulstforsch 51:45–50

    CAS  PubMed  Google Scholar 

  17. Kaaijk P, Troost D, Sminia P, Hulshof MC, van der Kracht AH, Leenstra S, Bosch DA (1997) Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas. Eur J Cancer 33:645–651

    Article  CAS  PubMed  Google Scholar 

  18. Barranco SC, Romsdahl MM, Humphrey RM (1971) The radiation response of human malignant melanoma cells grown in vitro. Cancer Res 31:830–833

    CAS  PubMed  Google Scholar 

  19. Malaise EP, Fertil B, Chavaudra N, Guichard M (1986) Distribution of radiation sensitivities for human tumor cells of specific histological types: comparison of in vitro to in vivo data. Int J Radiat Oncol Biol Phys 12:617–624

    Article  CAS  PubMed  Google Scholar 

  20. Mealey J, Chen TT, Shupe R (1974) Response of cultured human glioblastomas to radiation and BCNU chemotherapy. J Neurosurg 41:339–349

    Article  PubMed  Google Scholar 

  21. Nilsson S, Carlsson J, Larsson, Pontén J (1980) Survival of irradiated glia and glioma cells studied with a new cloning technique. Int J Radiat Biol 37:267–279

    Article  CAS  Google Scholar 

  22. Keng PC, Wheeler KT (1980) Radiation response of synchronized 9L rat brain tumor cells separated by centrifugal elutriation. Radiat Res 83:633–643

    Article  CAS  PubMed  Google Scholar 

  23. Suit HD, Zietman A, Tomkinson K, Ramsay J, Gerweck L, Sedlacek R (1990) Radiation response of xenografts of a human squamous cell carcinoma and a glioblastoma multiforme: a progress report. Int J Radiat Oncol Biol Phys 18:365–373

    Article  CAS  PubMed  Google Scholar 

  24. Engebraaten O, Bjerkvig R, Pedersen PH, Laerum OD (1993) Effects of EGF, bFGF, NGF and PDGF(bb) on cell proliferative, migratory and invasive capacities of human brain-tumour biopsies in vitro. Int J Cancer 53:209–214

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe H, Miura M, Sasaki T (1999) Differential effects of the insulin-like growth factor I receptor on radiosensitivity and spontaneous necrosis formation of human glioblastoma cells grown in multicellular spheroids. Exp Cell Res 10:99–111

    Article  Google Scholar 

  26. Mahesparan R, Tysnes BB, Edvardsen K, Haugeland HK, Cabrera IG, Lund-Johansen M, Engebraaten HK, Bjerkvig R (1997) Role of high molecular weight extracellular matrix proteins in glioma cell migration. Neuropathol Appl Neurobiol 23:102–112

    Article  CAS  PubMed  Google Scholar 

  27. Knott JC, Mahesparan R, Garcia-Cabrera I, Tynes BB, Edvardsen K, Ness GO, Mork S, Lund-Johansen M, Bjerkvig R (1998) Stimulation of extracellular matrix components in the normal brain by invading glioma cells. Int J Cancer 75:864–872

    Article  CAS  PubMed  Google Scholar 

  28. Tonn JC, Wunderlich S, Kerkau S, Klein CE, Roosen K (1998) Invasive behaviour of human gliomas is mediated by interindividually different integrin patterns. Anticancer Res 18:2599–2605

    CAS  PubMed  Google Scholar 

  29. Baumann GS, Fisher BJ, McDonald W, Amberger VR, Moore E, Del Maestro RF (1999) Effects of radiation on a three-dimensional model of malignant glioma invasion. Int J Dev Neurosci 17:643–651

    Article  Google Scholar 

  30. Bernhard EJ, Maity A, Muschel RJ, McKenna WG (1995) Effects of ionizing radiation on cell cycle progression. A review. Radiat Environ Biophys 34:79–83

    Article  CAS  PubMed  Google Scholar 

  31. Zätterström UK, Engellau J, Johansson MC, Wennerberg J, Kjellen E (1995) Radiation effects on S-phase duration, labelling index, potential doubling time and DNA distribution in head and neck cancer xenografts. Acta Oncol 34:205–211

    Article  Google Scholar 

  32. Nehls P, van Beuningen D, Karwowski M (1991) After X-irradiation a transient arrest of L929 cells in G2-phase coincides with a rapid elevation of the level of O6-alkylguanine-DNA alkyltransferase. Radiat Environ Biophys 30:21–31

    Article  CAS  PubMed  Google Scholar 

  33. Bjerkvig R, Tonnesen A, Laerum OD, Backlund EO (1990) Multicellular tumor spheroids from human gliomas maintained in organ culture. J Neurosurg 72:463–475

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Department of Neurosurgery, Lübeck, Germany. The technical assistance of Ms. E. Pawlak is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Gliemroth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gliemroth, J., Feyerabend, T., Gerlach, C. et al. Proliferation, migration, and invasion of human glioma cells exposed to fractionated radiotherapy in vitro. Neurosurg Rev 26, 198–205 (2003). https://doi.org/10.1007/s10143-003-0253-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-003-0253-1

Keywords

Navigation