Skip to main content
Log in

Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The soil-borne pathogen Verticillium dahliae, also referred as “The Cotton Cancer,” is responsible for causing Verticillium wilt in cotton crops, a destructive disease with a global impact. To infect cotton plants, the pathogen employs multiple virulence mechanisms such as releasing enzymes that degrade cell walls, activating genes that contribute to virulence, and using protein effectors. Conversely, cotton plants have developed numerous defense mechanisms to combat the impact of V. dahliae. These include strengthening the cell wall by producing lignin and depositing callose, discharging reactive oxygen species, and amassing hormones related to defense. Despite the efforts to develop resistant cultivars, there is still no permanent solution to Verticillium wilt due to a limited understanding of the underlying molecular mechanisms that drive both resistance and pathogenesis is currently prevalent. To address this challenge, cutting-edge technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), host-induced gene silencing (HIGS), and gene delivery via nano-carriers could be employed as effective alternatives to control the disease. This article intends to present an overview of V. dahliae virulence mechanisms and discuss the different cotton defense mechanisms against Verticillium wilt, including morphophysiological and biochemical responses and signaling pathways including jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and strigolactones (SLs). Additionally, the article highlights the significance of microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) in gene expression regulation, as well as the different methods employed to identify and functionally validate genes to achieve resistance against this disease. Gaining a more profound understanding of these mechanisms could potentially result in the creation of more efficient strategies for combating Verticillium wilt in cotton crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abdurakhmonov IY, Kohel RJ, Yu JZ, Pepper AE, Abdullaev AA, Kushanov FN, Salakhutdinov IB, Buriev ZT, Saha SUKUMAR, Scheffler BE, Jenkins JN (2008) Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics 92(6):478–487

    CAS  PubMed  Google Scholar 

  • Ahmad S, GORDON‐WEEKS RUTH, Pickett J, Ton J (2010) Natural variation in priming of basal resistance: from evolutionary origin to agricultural exploitation. Molecular plant pathology 11(6):817–827

    PubMed  PubMed Central  Google Scholar 

  • Akiyama K, Matsuzaki KI, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043):824–827

    CAS  PubMed  Google Scholar 

  • Andersen EJ, Ali S, Byamukama E, Yen Y, Nepal MP (2018) Disease resistance mechanisms in plants. Genes 9(7):339

    PubMed  PubMed Central  Google Scholar 

  • Apostol I, Low PS, Heinstein P, Stipanovic RD, Altman DW (1987) Inhibition of elicitor-induced phytoalexin formation in cotton and soybean cells by citrate. Plant Physiology 84(4):1276–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Back M, Haydock P, Jenkinson P (2002) Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathology 51(6):683–697

    Google Scholar 

  • Barbara D (2003) Verticillium Wilts-GF Pegg and BL Brady; CABI Publishing, CAB International, Wallingford, Oxon OX10 8DE, UK & 10 East 40th Street, Suite 3203, New York, NY 10016, USA, 552 pages. ISBN 0 85199 529 2. Physiological and Molecular Plant Pathology 1(62):51–52

    Google Scholar 

  • Bardak A, Çelik S, Erdoğan O, Ekinci R, Dumlupinar Z (2021) Association mapping of Verticillium wilt disease in a worldwide collection of cotton (Gossypium hirsutum L.). Plants 10(2):306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beliën T, Van Campenhout S, Robben J, Volckaert G (2006) Microbial endoxylanases: effective weapons to breach the plant cell-wall barrier or, rather, triggers of plant defense systems? Molecular Plant-Microbe Interactions 19(10):1072–1081

    PubMed  Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. The Plant Journal 29(1):23–32

    CAS  PubMed  Google Scholar 

  • Betsuyaku S, Katou S, Takebayashi Y, Sakakibara H, Nomura N, Fukuda H (2018) Salicylic acid and jasmonic acid pathways are activated in spatially different domains around the infection site during effector-triggered immunity in Arabidopsis thaliana. Plant and Cell Physiology 59(1):8–16

    CAS  PubMed  Google Scholar 

  • Bhat R, Subbarao K (1999) Host range specificity in Verticillium dahliae. Phytopathology 89(12):1218–1225

    CAS  PubMed  Google Scholar 

  • Block A, Toruño TY, Elowsky CG, Zhang C, Steinbrenner J, Beynon J, Alfano JR (2014) The Pseudomonas syringae type III effector H op D 1 suppresses effector-triggered immunity, localizes to the endoplasmic reticulum, and targets the A rabidopsis transcription factor NTL 9. New phytologist 201(4):1358–1370

    CAS  PubMed  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annual review of phytopathology 48:419–436

    CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512

    CAS  PubMed  Google Scholar 

  • Bocos-Asenjo IT, Niño-Sánchez J, Ginésy M, Diez JJ (2022) New insights on the integrated management of plant diseases by RNA strategies: Mycoviruses and RNA interference. International journal of molecular sciences 23(16):9236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bok JW, Chiang YM, Szewczyk E, Reyes-Dominguez Y, Davidson AD, Sanchez JF, Lo HC, Watanabe K, Strauss J, Oakley BR, Wang CC (2009) Chromatin-level regulation of biosynthetic gene clusters. Nature chemical biology 5(7):462–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of Microbe–associated molecular patterns and danger signals by pattern-recognition. Annual review of plant biology 60:379–406

    CAS  PubMed  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324(5928):742–744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiology 174(2):935–942. https://doi.org/10.1104/pp.17.00426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology 166(3):1292–1297. https://doi.org/10.1104/pp.114.247577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proceedings of the National Academy of Sciences 107(20):9452–9457

    CAS  Google Scholar 

  • Bu B, Qiu D, Zeng H, Guo L, Yuan J, Yang X (2014) A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton. Plant Cell Reports 33(3):461–470

    CAS  PubMed  Google Scholar 

  • Buchner V, Nachmias A, Burstein Y (1982) Isolation and partial characterization of a phytotoxic glycopeptide from a protein—lipopolysaccharide complex produced by a potato isolate of Verticillium dahliae. FEBS letters 138(2):261–264

    CAS  Google Scholar 

  • Buchner V, Burstein Y, Nachmias A (1989) Comparison of Verticillium dahliae-produced phytotoxic peptides purified from culture fluids and infected potato stems. Physiological and Molecular Plant Pathology 35(3):253–269

    CAS  Google Scholar 

  • Cai CP, Li C, Sun RR, Zhang BH, Nichols RL, Hake KD, Pan XP (2021) Small RNA and degradome deep sequencing reveals important roles of microRNAs in cotton (Gossypium hirsutum L.) response to root-knot nematode Meloidogyne incognita infection. Genomics 113(3):1146–1156 https://doi.org/10.1016/j.ygeno.2021.02.018

  • Cai Y, Cai X, Wang Q, Wang P, Zhang Y, Cai C, Xu Y, Wang K, Zhou Z, Wang C, Geng S (2020) Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis. Plant Biotechnology Journal 18(3):814–828

    CAS  PubMed  Google Scholar 

  • Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnology Journal 16(1):176–185. https://doi.org/10.1111/pbi.12758

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Xiaohong H, Mo J, Sun Q, Yang J, Liu J (2009) Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: a review. African journal of Biotechnology 8:25

    Google Scholar 

  • Cao TY, Qin MH, Zhu S, Li YB (2022) Silencing of a cotton actin-binding protein GhWLIM1C decreases resistance against Verticillium dahliae infection. Plants-Basel 11(14):1828. https://doi.org/10.3390/plants11141828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catinot J, Huang JB, Huang PY, Tseng MY, Chen YL, Gu SY, Lo WS, Wang LC, Chen YR, Zimmerli L (2015) Ethylene response factor 96 positively regulates A rabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate–and ethylene-responsive defence genes. Plant, cell & environment 38(12):2721–2734

    CAS  Google Scholar 

  • Chen P, Lee B, Robb J (2004) Tolerance to a non-host isolate of Verticillium dahliae in tomato. Physiological and Molecular Plant Pathology 64(6):283–291

    CAS  Google Scholar 

  • Chen X, Lu X, Shu N, Wang S, Wang J, Wang D, Guo L, Ye W (2017) Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Scientific reports 7:1–7. https://doi.org/10.1038/srep44304

    Article  CAS  Google Scholar 

  • Chen Y, Zhang M, Wang L, Yu X, Li X, Jin D, Zeng J, Ren H, Wang F, Song S, Yan X (2021) GhKWL1 upregulates GhERF105 but its function is impaired by binding with VdISC1, a pathogenic effector of Verticillium dahliae. International Journal of Molecular Sciences 22(14):7328. https://doi.org/10.3390/ijms22147328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng HQ, Han LB, Yang CL, Wu XM, Zhong NQ, Wu JH, Wang FX, Wang HY, Xia GX (2016) The cotton MYB108 forms a positive feedback regulation loop with CML11 and participates in the defense response against Verticillium dahliae infection. Journal of experimental botany 67(6):1935–1950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coego A, Ramirez V, Gil MJ, Flors V, Mauch-Mani B, Vera P (2005) An Arabidopsis homeodomain transcription factor, overexpressor of cationic peroxidase3, mediates resistance to infection by necrotrophic pathogens. The Plant Cell 17(7):2123–2137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Correll J, Gordon T, McCain A (1988) Vegetative compatibility and pathogenicity of Verticillium albo-atrum. Phytopathology 78(8):1017–1021

    Google Scholar 

  • Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annual review of plant biology 66(487):10.1146

    Google Scholar 

  • Daayf F (2015) Verticillium wilts in crop plants: pathogen invasion and host defence responses. Canadian journal of plant pathology 37(1):8–20

    CAS  Google Scholar 

  • Dadd-Daigle P, Kirkby K, Chowdhury PR, Labbate M, Chapman TA (2021) The Verticillium wilt problem in Australian cotton. Australasian Plant Pathology 50:129–135

    Google Scholar 

  • De Jonge R, Peter van Esse H, Maruthachalam K, Bolton MD, Santhanam P, Saber MK, Zhang Z, Usami T, Lievens B, Subbarao KV, Thomma BP (2012) Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proceedings of the National Academy of Sciences 109(13):5110–5115

    Google Scholar 

  • del Pozo O, Pedley KF, Martin GB (2004) MAPKKKα is a positive regulator of cell death associated with both plant immunity and disease. The EMBO journal 23(15):3072–3082

    PubMed  PubMed Central  Google Scholar 

  • Deng S, Wang CY, Zhang X, Wang Q, Lin L (2015) VdNUC-2, the key regulator of phosphate responsive signaling pathway, is required for Verticillium dahliae infection. PloS one 10:e0145190

    PubMed  PubMed Central  Google Scholar 

  • Deng C, Wang Y, Huang F, Lu S, Zhao L, Ma X, Kai G (2020) SmMYB2 promotes salvianolic acid biosynthesis in the medicinal herb Salvia miltiorrhiza. Journal of integrative plant biology 62(11):1688–1702

    CAS  PubMed  Google Scholar 

  • Deng YH, Chen QJ, Qu YY (2022) Protein S-acyl transferase GhPAT27 was associated with Verticillium wilt resistance in cotton. Plants-Basel 11(20):2758. https://doi.org/10.3390/plants11202758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deniz E, Erman B (2017) Long noncoding RNA (lincRNA), a new paradigm in gene expression control. Functional & integrative genomics 17:135–143

    CAS  Google Scholar 

  • Dodds PN, Lawrence GJ, Catanzariti A-M, Ayliffe MA, Ellis JG (2004) The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. The Plant Cell 16(3):755–768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doehlemann G, Van Der Linde K, Aßmann D, Schwammbach D, Hof A, Mohanty A, Jackson D, Kahmann R (2009) Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS pathogens 5(2):e1000290

    PubMed  PubMed Central  Google Scholar 

  • Dong X (2004) NPR1, all things considered. Current Opinion in Plant Biology 7(5):547–552

    CAS  PubMed  Google Scholar 

  • Duan X, Zhang Z, Wang J, Zuo K (2016) Characterization of a novel cotton subtilase gene GbSBT1 in response to extracellular stimulations and its role in Verticillium resistance. PloS one 11(4):e0153988

    PubMed  PubMed Central  Google Scholar 

  • Dubery IA, Slater V (1997) Induced defence responses in cotton leaf disks by elicitors from Verticillium dahliae. Phytochemistry 44(8):1429–1434

    CAS  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends in plant science 15(10):573–581

    CAS  PubMed  Google Scholar 

  • Faulkner C, Robatzek S (2012) Plants and pathogens: putting infection strategies and defence mechanisms on the map. Current Opinion in Plant Biology 15(6):699–707

    CAS  PubMed  Google Scholar 

  • Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Research 23(10):1229–1232. https://doi.org/10.1038/cr.2013.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111(12):4632–4637. https://doi.org/10.1073/pnas.1400822111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng H, Li C, Zhou J, Yuan Y, Feng Z, Shi Y, Zhao L, Zhang Y, Wei F, Zhu H (2021) A cotton WAKL protein interacted with a DnaJ protein and was involved in defense against Verticillium dahliae. International Journal of Biological Macromolecules 167:633–643. https://doi.org/10.1016/j.ijbiomac.2020.11.191

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. The Plant Journal 35(2):193–205

    CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell 17(7):1866–1875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fradin EF, Thomma BP (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular plant pathology 7(2):71–86

    CAS  PubMed  Google Scholar 

  • Fradin EF, Abd-El-Haliem A, Masini L, van den Berg GC, Joosten MH, Thomma BP (2011) Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiology 156(4):2255–2265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proceedings of the National Academy of Sciences 98(1):373–378

    CAS  Google Scholar 

  • Galletti R, Ferrari S, De Lorenzo G (2011) Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide-or flagellin-induced resistance against Botrytis cinerea. Plant Physiology 157(2):804–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, Zhou BJ, Li GY, Jia PS, Li H, Zhao YL, Zhao P, Xia GX, Guo HS (2010) A glutamic acid-rich protein identified in Verticillium dahliae from an insertional mutagenesis affects microsclerotial formation and pathogenicity. PloS one 5:e15319

    PubMed  PubMed Central  Google Scholar 

  • Gao X, Wheeler T, Li Z, Kenerley CM, He P, Shan L (2011) Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. The Plant Journal 66(2):293–305

    CAS  PubMed  Google Scholar 

  • Gao W, Long L, Zhu LF, Xu L, Gao WH, Sun LQ, Liu LL, Zhang XL (2013a) Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Molecular & Cellular Proteomics 12(12):3690–3703

    CAS  Google Scholar 

  • Gao X, Li F, Li M, Kianinejad AS, Dever JK, Wheeler TA, Li Z, He P, Shan L (2013b) Cotton GhBAK1 mediates Verticillium wilt resistance and cell death. Journal of integrative plant biology 55(7):586–596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Long L, Xu L, Lindsey K, Zhang X, Zhu L (2016) Suppression of the homeobox gene HDTF1 enhances resistance to Verticillium dahliae and Botrytis cinerea in cotton. Journal of integrative plant biology 58(5):503–513

    CAS  PubMed  Google Scholar 

  • Gao F, Zhang BS, Zhao JH, Huang JF, Jia PS, Wang S, Zhang J, Zhou JM, Guo HS (2019) Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nature Plants 5(11):1167–1176

    CAS  PubMed  Google Scholar 

  • Gaspar YM, McKenna JA, McGinness BS, Hinch J, Poon S, Connelly AA, Anderson MA, Heath RL (2014) Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1. Journal of experimental botany 65(6):1541–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48(12):909–930

    CAS  PubMed  Google Scholar 

  • Gimenez-Ibanez S, Boter M, Fernández-Barbero G, Chini A, Rathjen JP, Solano R (2014) The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis. PLoS biology 12(2):e1001792

    PubMed  PubMed Central  Google Scholar 

  • Göhre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annual review of phytopathology 46:189–215

    PubMed  Google Scholar 

  • Gold J, Robb J (1995) The role of the coating response in Craigella tomatoes infected with Verticillium dahliae, races 1 and 2. Physiological and Molecular Plant Pathology 47(3):141–157

    Google Scholar 

  • Gong Q, Yang Z, Wang X, Butt HI, Chen E, He S, Zhang C, Zhang X, Li F (2017) Salicylic acid-related cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae. BMC plant biology 17(1):1–15

    Google Scholar 

  • Grayston S, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied soil ecology 5(1):29–56

    Google Scholar 

  • Gu Z, Liu T, Ding B, Li F, Wang Q, Qian S, Ye F, Chen T, Yang Y, Wang J, Wang G (2017) Two lysin-motif receptor kinases, Gh-LYK1 and Gh-LYK2, contribute to resistance against Verticillium wilt in upland cotton. Frontiers in Plant Science 8:2133. https://doi.org/10.3389/fpls.2017.02133

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo W, Jin L, Miao Y, He X, Hu Q, Guo K, Zhu L, Zhang X (2016) An ethylene response-related factor, GbERF1-like, from Gossypium barbadense improves resistance to Verticillium dahliae via activating lignin synthesis. Plant molecular biology 91(3):305–318

    CAS  PubMed  Google Scholar 

  • Guo J, Cao PH, Yuan LT, Xia GX, Zhang HY, Li J, Wang FX (2022) Revealing the contribution of GbPR10.5D1 to resistance against Verticillium dahliae and its regulation for structural defense and immune signaling. Plant Genome 1:e20271. https://doi.org/10.1002/tpg2.20271

    Article  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286(5441):950–952. https://doi.org/10.1126/science.286.5441.950

    Article  CAS  PubMed  Google Scholar 

  • He Q, Zhu S, Zhang B (2014a) MicroRNA–target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.). Functional & integrative genomics 14:507–515

    CAS  Google Scholar 

  • He X, Sun Q, Jiang H, Zhu X, Mo J, Long L, Xiang L, Xie Y, Shi Y, Yuan Y, Cai Y (2014b) Identification of novel microRNAs in the Verticillium wilt-resistant upland cotton variety KV-1 by high-throughput sequencing. Springerplus 3:564

    PubMed  PubMed Central  Google Scholar 

  • He X, Zhu L, Xu L, Guo W, Zhang X (2016) GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks. Plant Cell Reports 35(10):2167–2179

    CAS  PubMed  Google Scholar 

  • He X, Wang TY, Zhu W, Wang YJ, Zhu LF (2018a) GhHB12, a HD-ZIP I transcription factor, negatively regulates the cotton resistance to Verticillium dahliae. International Journal of Molecular Sciences 19(12):3997. https://doi.org/10.3390/ijms19123997

    Article  PubMed  PubMed Central  Google Scholar 

  • He X, Zhu L, Wassan GM, Wang Y, Miao Y, Shaban M, Hu H, Sun H, Zhang X (2018b) GhJAZ2 attenuates cotton resistance to biotic stresses via the inhibition of the transcriptional activity of GhbHLH171. Molecular plant pathology 19(4):896–908

    CAS  PubMed  Google Scholar 

  • Hoffman T, Schmidt JS, Zheng X, Bent AF (1999) Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiology 119(3):935–950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horner C (1954) Pathogenicity of Verticillium isolates to peppermint. Phytopathology 44:239–242

    Google Scholar 

  • Hu Q, Zhu L, Zhang X, Guan Q, Xiao S, Min L, Zhang X (2019) GhCPK33 negatively regulates defense against Verticillium dahliae by phosphorylating GhOPR3 (vol 178, pg 876, 2018). Plant Physiology 180(2):1241–1241. https://doi.org/10.1104/pp.19.00423

    Article  Google Scholar 

  • Hu G, Hao M, Wang L, Liu J, Zhang Z, Tang Y, Peng Q, Yang Z, Wu J (2020) The cotton miR477-CBP60A module participates in plant defense against Verticillium dahlia. Molecular Plant-Microbe Interactions 33(4):624–636. https://doi.org/10.1094/Mpmi-10-19-0302-R

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Xiao SH, Wang XR, Ao CW, Zhang XL, Zhu LF (2021) GhWRKY1-like enhances cotton resistance to Verticillium dahliae via an increase in defense-induced lignification and S monolignol content. Plant Science 305:110833. https://doi.org/10.1016/j.plantsci.2021.110833

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Zhang Y, Zhou J, Wei F, Feng Z, Zhao L, Shi Y, Feng H, Zhu H (2021) The respiratory burst oxidase homolog protein D (GhRbohD) positively regulates the cotton resistance to Verticillium dahliae. International Journal of Molecular Sciences 22(23):13041. https://doi.org/10.3390/ijms222313041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Li G, Wang Q, Meng Q, Xu F, Chen Q, Liu F, Hu Y, Luo M (2022) GhCYP710A1 participates in cotton resistance to Verticillium wilt by regulating stigmasterol synthesis and plasma membrane stability. International Journal of Molecular Sciences 23(15):8437. https://doi.org/10.3390/ijms23158437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingle RA, Carstens M, Denby KJ (2006) PAMP recognition and the plant–pathogen arms race. Bioessays 28(9):880–889

    CAS  PubMed  Google Scholar 

  • Isaac I, Keyworth W (1948) Verticillium wilt of the hop (Humulus lupulus) a study of the pathogenicity of isolates from fluctuating and from progressive outbreaks. Annals of Applied Biology 35(2):243–249

    Google Scholar 

  • Jalali B, Bhargava S, Kamble A (2006) Signal transduction and transcriptional regulation of plant defence responses. Journal of Phytopathology 154(2):65–74

    CAS  Google Scholar 

  • Janga MR, Campbell LM, Rathore KS (2017) CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.). Plant molecular biology 94(4-5):349–360. https://doi.org/10.1007/s11103-017-0599-3

    Article  CAS  PubMed  Google Scholar 

  • Jia MZ, Li ZF, Han S, Wang S, Jiang J (2022a) Effect of 1-aminocyclopropane-1-carboxylic acid accumulation on Verticillium dahliae infection of upland cotton. Bmc Plant Biology 22(1):386. https://doi.org/10.1186/s12870-022-03774-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia P, Tang Y, Hu G, Quan Y, Chen A, Zhong N, Peng Q, Wu J (2022b) Cotton miR319b-targeted TCP4-like enhances plant defense against Verticillium dahliae by activating GhICS1 transcription expression. Frontiers in Plant Science 13:870882. https://doi.org/10.3389/fpls.2022.870882

    Article  PubMed  PubMed Central  Google Scholar 

  • Jian G, Lu M, Xiu J, Wang F, Zhang H (2004) Control strategy of Verticillium dahliae in cotton. China Plant Protection 24(4):30–31

    Google Scholar 

  • Jiang WZ, Zhou HB, Bi HH, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic acids research 41(20):e188. https://doi.org/10.1093/nar/gkt780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. The EMBO journal 19(22):6150–6161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson A, Staal J, Dixelius C (2006) Early responses in the Arabidopsis-Verticillium longisporum pathosystem are dependent on NDR1, JA-and ET-associated signals via cytosolic NPR1 and RFO1. Molecular Plant-Microbe Interactions 19(9):958–969

    CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006a) The plant immune system. Nature 444(7117):323–329

    CAS  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006b) The plant immune system. Nature 444(7117):323–329. https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  • Kalwan G, Gill SS, Priyadarshini P, Gill R, Yadava YK, Yadav S, Baruah PM, Agarwala N, Gaikwad K, Jain PK (2022) Approaches for identification and analysis of plant circular RNAs and their role in stress responses. Environmental and experimental botany 205:105099

    Google Scholar 

  • Kanyuka K, Rudd JJ (2019) Cell surface immune receptors: the guardians of the plant’s extracellular spaces. Current Opinion in Plant Biology 50:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, Bansal KC (2012) Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC genomics 13(1):1–19

    Google Scholar 

  • Katsantonis D, Hillocks RJ, Gowen S (2005) Enhancement of germination of spores of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum in vascular fluid from cotton plants infected with the root-knot nematode. Phytoparasitica 33(3):215–224

    Google Scholar 

  • Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, Van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proceedings of the National Academy of Sciences 98(11):6511–6515

    CAS  Google Scholar 

  • Keller NP (2019) Fungal secondary metabolism: regulation, function and drug discovery. Nature Reviews Microbiology 17(3):167–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity, pathogenicity, and management of Verticillium species. Annual review of phytopathology 47:39–62

    CAS  PubMed  Google Scholar 

  • Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BP, Chen Z, Henrissat B, Lee YH, Park J, Garcia-Pedrajas MD (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS pathogens 7(7):e1002137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knoester M, Van Loon LC, Van Den Heuvel J, Hennig J, Bol JF, Linthorst HJ (1998) Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proceedings of the National Academy of Sciences 95(4):1933–1937

    CAS  Google Scholar 

  • Kohorn BD, Kohorn SL, Todorova T, Baptiste G, Stansky K, McCullough M (2012) A dominant allele of Arabidopsis pectin-binding wall-associated kinase induces a stress response suppressed by MPK6 but not MPK3 mutations. Molecular plant 5(4):841–851

    CAS  PubMed  Google Scholar 

  • Koornneef A, Pieterse CM (2008) Cross talk in defense signaling. Plant Physiology 146(3):839–844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzai Y, Kimura M, Watanabe M, Kusunoki K, Osaka D, Suzuki T, Matsui H, Yamamoto M, Ichinose Y, Toyoda K, Matsuura T (2018) Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon. New phytologist 217(2):771–783

    CAS  PubMed  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology 5(4):325–331

    CAS  PubMed  Google Scholar 

  • Lee S-W, Nazar RN, Powell DA, Robb J (1992) Reduced PAL gene suppression in Verticillium-infected resistant tomatoes. Plant molecular biology 18(2):345–352

    CAS  PubMed  Google Scholar 

  • Li C, Brant E, Budak H, Zhang BH (2021) CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. Journal of Zhejiang University-SCIENCE B 22(4):253–284 https://doi.org/10.1631/jzus.B2100009

  • Li C, Chu W, AliGill R, Sang SF, Shi YQ, Hu XZ, Yang YT, Zaman QU, Zhang BH (2023) Computational tools and resources for CRISPR/Cas genome editing. Genomics Proteomics & Bioinformatics https://doi.org/10.1016/j.gpb.2022.02.006

  • Li C, Unver T, Zhang BH (2017) A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.). Scientific Reports 7(1) https://doi.org/10.1038/srep43902

  • Li C, Zhang B (2016) MicroRNAs in control of plant development. Journal of cellular physiology 231(2):303–313

    CAS  PubMed  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell 16(2):319–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li SF, Parish RW (1995) Isolation of two novel myb-like genes from Arabidopsis and studies on the DNA-binding properties of their products. The Plant Journal 8(6):963–972

    CAS  PubMed  Google Scholar 

  • Li YB, Han LB, Wang HY, Zhang J, Sun ST, Feng DQ, Yang CL, Sun YD, Zhong NQ, Xia GX (2016) The thioredoxin GbNRX1 plays a crucial role in homeostasis of apoplastic reactive oxygen species in response to Verticillium dahliae infection in cotton. Plant Physiology 170(4):2392–2406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q-F, Zhang Y-C, Chen Y-Q, Yu Y (2017a) Circular RNAs roll into the regulatory network of plants. Biochemical and biophysical research communications 488(2):382–386

    CAS  PubMed  Google Scholar 

  • Li X-L, Ojaghian MR, Zhang J-Z, Zhu S-J (2017b) A new species of Scopulariopsis and its synergistic effect on pathogenicity of Verticillium dahliae on cotton plants. Microbiological research 201:12–20

    CAS  PubMed  Google Scholar 

  • Li NY, Ma XF, Short DP, Li TG, Zhou L, Gui YJ, Kong ZQ, Zhang DD, Zhang WQ, Li JJ, Subbarao KV (2018a) The island cotton NBS-LRR gene GbaNA1 confers resistance to the non-race 1 Verticillium dahliae isolate Vd991. Molecular plant pathology 19(6):1466–1479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li NY, Zhou L, Zhang DD, Klosterman SJ, Li TG, Gui YJ, Kong ZQ, Ma XF, Short DP, Zhang WQ, Li JJ (2018b) Heterologous expression of the cotton NBS-LRR gene GbaNA1 enhances Verticillium wilt resistance in Arabidopsis. Frontiers in Plant Science 9:119. https://doi.org/10.3389/fpls.2018.00119

    Article  PubMed  PubMed Central  Google Scholar 

  • Li R, Li R, Li X, Fu D, Zhu B, Tian H, Luo Y, Zhu H (2018c) Multiplexed CRISPR/Cas9-mediated metabolic engineering of gamma-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnology Journal 16(2):415–427. https://doi.org/10.1111/pbi.12781

    Article  CAS  PubMed  Google Scholar 

  • Li X, Pei Y, Sun Y, Liu N, Wang P, Liu D, Ge X, Li F, Hou Y (2018d) A cotton cyclin-dependent kinase E confers resistance to Verticillium dahliae mediated by jasmonate-responsive pathway. Frontiers in Plant Science 9:642. https://doi.org/10.3389/fpls.2018.00642

    Article  PubMed  PubMed Central  Google Scholar 

  • Li N, Han X, Feng D, Yuan D, Huang L-J (2019a) Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? International journal of molecular sciences 20(3):671

    PubMed  PubMed Central  Google Scholar 

  • Li X, Liu N, Sun Y, Wang P, Ge X, Pei Y, Liu D, Ma X, Li F, Hou Y (2019b) The cotton GhWIN2 gene activates the cuticle biosynthesis pathway and influences the salicylic and jasmonic acid biosynthesis pathways. Bmc Plant Biology 19(1):379. https://doi.org/10.1186/s12870-019-1888-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Sun Y, Liu N, Wang P, Pei Y, Liu D, Ma X, Ge X, Li F, Hou Y (2019c) Enhanced resistance to Verticillium dahliae mediated by an F-box protein GhACIF1 from Gossypium hirsutum. Plant Science 284:127–134. https://doi.org/10.1016/j.plantsci.2019.04.013

    Article  CAS  PubMed  Google Scholar 

  • Li ZS, Wang XY, Cui YP, Qiao KK, Zhu LF, Fan SL, Ma QF (2020) Comprehensive genome-wide analysis of thaumatin-like gene family in four cotton species and functional identification of GhTLP19 involved in regulating tolerance to Verticillium dahlia and drought. Frontiers in Plant Science 11:575015. https://doi.org/10.3389/fpls.2020.575015

    Article  PubMed  PubMed Central  Google Scholar 

  • Li TG, Zhang QQ, Jiang XL, Li R, Dhar N (2021) Cotton CC-NBS-LRR gene GbCNL130 confers resistance to Verticillium wilt across different species. Frontiers in Plant Science 12:695691. https://doi.org/10.3389/fpls.2021.695691

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhang S, Zhao Y, Zhao X, Xie W, Guo Y, Wang Y, Li K, Guo J, Zhu QH, Zhang X (2022) Identification and characterization of cinnamyl alcohol dehydrogenase encoding genes involved in lignin biosynthesis and resistance to Verticillium dahliae in upland cotton (Gossypium hirsutum L.). Frontiers in Plant Science 13:840397. https://doi.org/10.3389/fpls.2022.840397

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Zhang K, Chen KL, Gao CX (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics 41(2):63–68. https://doi.org/10.1016/j.jgg.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  • Ligoxigakis E, Vakalounakis D, Thanassoulopoulos C (2002) Weed hosts of Verticillium dahliae in Crete: susceptibility, symptomatology and significance. Phytoparasitica 30(5):511–518

    Google Scholar 

  • Lin B, Zhuo K, Chen S, Hu L, Sun L, Wang X, Zhang LH, Liao J (2016) A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system. New phytologist 209(3):1159–1173

    CAS  PubMed  Google Scholar 

  • Lipka U, Fuchs R, Lipka V (2008) Arabidopsis non-host resistance to powdery mildews. Current Opinion in Plant Biology 11(4):404–411

    CAS  PubMed  Google Scholar 

  • Liu L, Wang D, Zhang C, Liu H, Guo H, Cheng H, Liu E, Su X (2022a) The heat shock factor GhHSFA4a positively regulates cotton resistance to Verticillium dahliae. Frontiers in Plant Science 13:1050216. https://doi.org/10.3389/fpls.2022.1050216

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Sun R, Zhang X, Feng Z, Wei F, Zhao L, Zhang Y, Zhu L, Feng H, Zhu H (2020) Genome-wide analysis of OPR family genes in cotton identified a role for GhOPR9 in resistance. Genes 11(10):1134. https://doi.org/10.3390/genes11101134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Song T, Zhang X, Yuan H, Su L, Li W, Xu J, Liu S, Chen L, Chen T, Zhang M (2014a) Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nature communications 5(1):1–10

    Google Scholar 

  • Liu T, Song T, Zhang X, Yuan H, Su L, Li W, Xu J, Liu S, Chen L, Chen T, Zhang M (2014b) Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nature communications 5:4686

    CAS  PubMed  Google Scholar 

  • Liu W, Zhang BH (2022) The landscape of genome sequencing and assembling in plants. Funct Integr Genomics 22, 1147–1152. https://doi.org/10.1007/s10142-022-00916-x

  • Liu W, Liu J, Ning Y, Ding B, Wang X, Wang Z, Wang G-L (2013) Recent progress in understanding PAMP-and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Molecular plant 6(3):605–620

    CAS  PubMed  Google Scholar 

  • Liu X, Hao L, Li D, Zhu L, Hu S (2015b) Long non-coding RNAs and their biological roles in plants. Genomics, proteomics & bioinformatics 13(3):137–147

    CAS  Google Scholar 

  • Liu J, Benedict CR, Stipanovic RD, Bell AA (1999) Purification and characterization of S-adenosyl-L-methionine: desoxyhemigossypol-6-O-methyltransferase from cotton plants. An enzyme capable of methylating the defense terpenoids of cotton. Plant Physiology 121(3):1017–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Osbourn A, Ma P (2015a) MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Molecular plant 8(5):689–708

    CAS  PubMed  Google Scholar 

  • Liu T, Chen T, Kan J, Yao Y, Guo D, Yang Y, Ling X, Wang J, Zhang B (2022b) The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants. Plant Biotechnology Journal 20(4):722–735. https://doi.org/10.1111/pbi.13751

    Article  CAS  PubMed  Google Scholar 

  • Long L, Xu FC, Zhao JR, Li B, Xu L, Gao W (2020) GbMPK3 overexpression increases cotton sensitivity to Verticillium dahliae by regulating salicylic acid signaling. Plant Science 292:110374. https://doi.org/10.1016/j.plantsci.2019.110374

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) Ethylene response factor1 integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell 15(1):165–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Low PS, Heinstein PF (1986) Elicitor stimulation of the defense response in cultured plant cells monitored by fluorescent dyes. Archives of Biochemistry and Biophysics 249(2):472–479

    CAS  PubMed  Google Scholar 

  • Lund ST, Stall RE, Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. The Plant Cell 10(3):371–382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo P, Wang YH, Wang GD, Essenberg M, Chen XY (2001) Molecular cloning and functional identification of (+)-δ-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. The Plant Journal 28(1):95–104

    CAS  PubMed  Google Scholar 

  • Luo X, Xie C, Dong J, Yang X, Sui A (2014) Interactions between Verticillium dahliae and its host: vegetative growth, pathogenicity, plant immunity. Applied microbiology and biotechnology 98(16):6921–6932

    CAS  PubMed  Google Scholar 

  • Luo X, Li Z, Xiao S, Ye Z, Nie X, Zhang X, Kong J, Zhu L (2021) Phosphate deficiency enhances cotton resistance to Verticillium dahliae through activating jasmonic acid biosynthesis and phenylpropanoid pathway. Plant Science 302:110724. https://doi.org/10.1016/j.plantsci.2020.110724

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Duan J, Ke J, He Y, Gu X, Xu TH, Yu H, Wang Y, Brunzelle JS, Jiang Y, Rothbart SB (2017) A D53 repression motif induces oligomerization of TOPLESS corepressors and promotes assembly of a corepressor-nucleosome complex. Science advances 3(6):e1601217

    PubMed  PubMed Central  Google Scholar 

  • Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, Wu L, Li Z, Liu Z, Sun G, Yan Y (2018) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nature genetics 50(6):803–813

    CAS  PubMed  Google Scholar 

  • Ma Q, Wang N, Ma L, Lu J, Wang H, Wang C, Yu S, Wei H (2020) The cotton BEL1-like transcription factor GhBLH7-D06 negatively regulates the defense response against Verticillium dahliae. International Journal of Molecular Sciences 21(19):7126. https://doi.org/10.3390/ijms21197126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Zheng Y, Chao Z, Chen H, Zhang Y, Yin M, Shen J, Yan S (2022) Visualization of the process of a nanocarrier-mediated gene delivery: stabilization, endocytosis and endosomal escape of genes for intracellular spreading. Journal of Nanobiotechnology 20(1):1–12

    PubMed  PubMed Central  Google Scholar 

  • Mansoori B, Smith C (2005) Elicitation of ethylene by Verticillium albo-atrum phytotoxins in potato. Journal of Phytopathology 153(3):143–149

    CAS  Google Scholar 

  • Marino D, Froidure S, Canonne J, Ben Khaled S, Khafif M, Pouzet C, Jauneau A, Roby D, Rivas S (2013) Arabidopsis ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence. Nature communications 4(1):1–9

    Google Scholar 

  • Mauch-Mani B, Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. The Plant Cell 8(2):203–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy RL, Zhong R, Ye Z-H (2009) MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant and Cell Physiology 50(11):1950–1964

    CAS  PubMed  Google Scholar 

  • Melech-Bonfil S, Sessa G (2010) Tomato MAPKKKε is a positive regulator of cell-death signaling networks associated with plant immunity. The Plant Journal 64(3):379–391

    CAS  PubMed  Google Scholar 

  • Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annual review of phytopathology 51(1):245–266

    CAS  PubMed  Google Scholar 

  • Meng X, Li F, Liu C, Zhang C, Wu Z, Chen Y (2010) Isolation and characterization of an ERF transcription factor gene from cotton (Gossypium barbadense L.). Plant molecular biology reporter 28(1):176–183

    CAS  Google Scholar 

  • Meng J, Gao H, Zhai W, Shi J, Zhang M, Zhang W, Jian G, Zhang M, Qi F (2018) Subtle regulation of cotton resistance to Verticillium wilt mediated by MAPKK family members. Plant Science 272:235–242

    CAS  PubMed  Google Scholar 

  • Meyer R, Slater V, Dubery IA (1994) A phytotoxic protein-lipopolysaccharide complex produced by Verticillium dahliae. Phytochemistry 35(6):1449–1453

    CAS  Google Scholar 

  • Miao W, Wang X, Li M, Song C, Wang Y, Hu D, Wang J (2010) Genetic transformation of cotton with a harpin-encoding gene hpa Xoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC plant biology 10(1):1–14

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli R (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences 88(21):9828–9832

    CAS  Google Scholar 

  • Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GQ, Xu ZP (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants 3(2):1–10

    Google Scholar 

  • Mo HJ, Sun YX, Zhu XL, Wang XF, Zhang Y, Yang J, Yan GJ, Ma ZY (2016) Cotton S-adenosylmethionine decarboxylase-mediated spermine biosynthesis is required for salicylic acid-and leucine-correlated signaling in the defense response to Verticillium dahliae. Planta 243(4):1023–1039

    CAS  PubMed  Google Scholar 

  • Mo S, Zhang Y, Wang X, Yang J, Sun Z, Zhang D, Chen B, Wang G, Ke H, Liu Z, Meng C (2021) Cotton GhSSI2 isoforms from the stearoyl acyl carrier protein fatty acid desaturase family regulate Verticillium wilt resistance. Molecular Plant Pathology 22(9):1041–1056. https://doi.org/10.1111/mpp.13093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nachmias A, Buchner V, Burstein Y (1985) Biological and immunochemical characterization of a low molecular weight phytotoxin isolated from a protein—lipopolysaccharide complex produced by a potato isolate of Verticillium dahliae Kleb. Physiological Plant Pathology 26(1):43–55

    CAS  Google Scholar 

  • Ngou BPM, Ahn H-K, Ding P, Jones JD (2021) Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592(7852):110–115

    CAS  PubMed  Google Scholar 

  • Nie H, Wang Y, Su Y, Hua J (2018) Exploration of miRNAs and target genes of cytoplasmic male sterility line in cotton during flower bud development. Functional & integrative genomics 18:457–476

    CAS  Google Scholar 

  • Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456(7223):720–723

    CAS  PubMed  Google Scholar 

  • Nürnberger T, Kemmerling B (2009) Pathogen-associated molecular patterns (PAMP) and PAMP-triggered immunity. Annual review of plant biology 34:16–47

    Google Scholar 

  • Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Nishimura Y (1994) Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 79(4):639–648

    CAS  PubMed  Google Scholar 

  • Oh C-S, Martin GB (2011) Effector-triggered immunity mediated by the Pto kinase. Trends in plant science 16(3):132–140

    CAS  PubMed  Google Scholar 

  • Oñate-Sánchez L, Anderson JP, Young J, Singh KB (2007) AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiology 143(1):400–409

    PubMed  PubMed Central  Google Scholar 

  • Pabo CO, Sauer RT (1992) Transcription factors: structural families and principles of DNA recognition. Annual review of biochemistry 61(1):1053–1095

    CAS  PubMed  Google Scholar 

  • Panigrahi GK, Sahoo A, Satapathy KB (2021) Insights to plant immunity: defense signaling to epigenetics. Physiological and Molecular Plant Pathology 113:101568

    CAS  Google Scholar 

  • Pantelides IS, Tjamos SE, Paplomatas EJ (2010) Ethylene perception via ETR1 is required in Arabidopsis infection by Verticillium dahliae. Molecular plant pathology 11(2):191–202

    CAS  PubMed  Google Scholar 

  • Parkhi V, Kumar V, Campbell LAM, Bell AA, Rathore KS (2010) Expression of arabidopsis NPR1 in transgenic cotton confers resistance to non-defoliating isolates of Verticillium dahliae but not the defoliating isolates. Journal of Phytopathology 158(11-12):822–825

    CAS  Google Scholar 

  • Pegg G (1965) Phytotoxin production by Verticillium albo-atrum Reinke et Berthold. Nature 208(5016):1228–1229

    CAS  Google Scholar 

  • Pegg GF, Brady BL (2002) Verticillium wilts. CABI

    Google Scholar 

  • Pegg G, Gull K, Newsam R (1976) Transmission electron microscopy of Verticillium albo-atrum hyphae in xylem vessels of tomato plants. Physiological Plant Pathology 8(3):221–224

    Google Scholar 

  • Peng RH, Jones DC, Liu F, Zhang BH (2021) From Sequencing to Genome Editing for Cotton Improvement. Trends in Biotechnology 39(3):221–224 https://doi.org/10.1016/j.tibtech.2020.09.001

  • Polychronopoulos A, Houston B, Lownsbery B (1969) Penetration and development of Rhizoctonia solani in sugar beet seedlings infected with Heterodera schachtii. Phytopathology 59(4):482

    Google Scholar 

  • Porter C, Green R (1952) Production of exotoxin in the genus Verticillium. Phytopathology 42:472

    Google Scholar 

  • Postel, S., Kemmerling, B. (2009). Plant systems for recognition of pathogen-associated molecular patternsSeminars in cell & developmental biology. 20. 9. Academic Press.

    Google Scholar 

  • Pottinger SE, Innes RW (2020) RPS5-mediated disease resistance: fundamental insights and translational applications. Annual review of phytopathology 58:139–160

    CAS  PubMed  Google Scholar 

  • Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. The Plant Journal 40(6):979–995

    CAS  PubMed  Google Scholar 

  • Prieto P, Navarro-Raya C, Valverde-Corredor A, Amyotte SG, Dobinson KF, Mercado-Blanco J (2009) Colonization process of olive tissues by Verticillium dahliae and its in planta interaction with the biocontrol root endophyte Pseudomonas fluorescens PICF7. Microbial Biotechnology 2(4):499–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard L, Birch PR (2014) The zigzag model of plant–microbe interactions: is it time to move on? Molecular plant pathology 15(9):865

    PubMed  PubMed Central  Google Scholar 

  • Qi J, Song CP, Wang B, Zhou J, Kangasjärvi J, Zhu JK, Gong Z (2018) Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of integrative plant biology 60(9):805–826

    CAS  PubMed  Google Scholar 

  • Qin J, Wang K, Sun L, Xing H, Wang S, Li L, Chen S, Guo HS, Zhang J (2018) The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. Elife 7:e34902

    PubMed  PubMed Central  Google Scholar 

  • Qin T, Liu S, Zhang Z, Sun L, He X, Lindsey K, Zhu L, Zhang X (2019) GhCyP3 improves the resistance of cotton to Verticillium dahliae by inhibiting the E3 ubiquitin ligase activity of GhPUB17. Plant Molecular Biology 99(4-5):379–393. https://doi.org/10.1007/s11103-019-00824-y

    Article  CAS  PubMed  Google Scholar 

  • Rajamuthiah R, Mylonakis E (2014) Effector triggered immunity: activation of innate immunity in metazoans by bacterial effectors. Virulence 5(7):697–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramegowda V, Mysore KS, Senthil-Kumar M (2014) Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants. Frontiers in Plant Science 5:323. https://doi.org/10.3389/fpls.2014.00323

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren Z, Liu W, Wang X, Chen M, Zhao J, Zhang F, Feng H, Liu J, Yang D, Ma X, Li W (2021) Seven in absentia ubiquitin ligases positively regulate defense against Verticillium dahliae in Gossypium hirsutum. Frontiers in Plant Science 12:760520. https://doi.org/10.3389/fpls.2021.760520

    Article  PubMed  PubMed Central  Google Scholar 

  • Resende M, Flood J, Cooper RM (1994) Host specialization of Verticillium dahliae, with emphasis on isolates from cocoa (Theobroma cacao). Plant Pathology 43(1):104–111

    Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110

    CAS  PubMed  Google Scholar 

  • Robb J, Powell D, Street P (1989) Vascular coating: a barrier to colonization by the pathogen in Verticillium wilt of tomato. Canadian Journal of Botany 67(2):600–607

    Google Scholar 

  • Robison MM, Shah S, Tamot B, Pauls KP, Moffatt BA, Glick BR (2001) Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Molecular plant pathology 2(3):135–145

    CAS  PubMed  Google Scholar 

  • Saeedizadeh A, Kheiri A, Okhovat M, Hoseininejad A (2003) Study on interaction between root-knot nematode Meloidogyne javanica and wilt fungus Verticillium dahliae on olive seedlings in greenhouse. Communications in Agricultural and Applied Biological Sciences 68(4 Pt A):139–143

    CAS  PubMed  Google Scholar 

  • Sanju S, Siddappa S, Thakur A, Shukla PK, Srivastava N, Pattanayak D, Sharma S, Singh BP (2015) Host-mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts partial resistance to late blight disease. Functional & integrative genomics 15:697–706

    CAS  Google Scholar 

  • Santhanam P, Thomma B (2013) Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes. Molecular Plant-microbe Interactions:MPMI 26(2):249–256

    CAS  PubMed  Google Scholar 

  • Schenke D, Boettcher C, Scheel D (2011) Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production. Plant, cell & environment 34(11):1849–1864

    CAS  Google Scholar 

  • Schweizer LPLLD, Tollot GTSLL, Kahmann MZARSR (2015) Fungal effectors and plant susceptibility. Annual review of plant biology 66:513–545

    PubMed  Google Scholar 

  • Seo PJ, Park CM (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New phytologist 186(2):471–483

    CAS  PubMed  Google Scholar 

  • Shaban M, Miao Y, Ullah A, Khan AQ, Menghwar H, Khan AH, Ahmed MM, Tabassum MA, Zhu L (2018) Physiological and molecular mechanism of defense in cotton against Verticillium dahliae. Plant Physiology and Biochemistry 125:193–204

    CAS  PubMed  Google Scholar 

  • Shaban M, Khan AH, Noor E, Malik W, Ali HMW, Shehzad M, Akram U, Qayyum A (2021) A 13-lipoxygenase, GhLOX2, positively regulates cotton tolerance against Verticillium dahliae through JA-mediated pathway. Gene 796:145797. https://doi.org/10.1016/j.gene.2021.145797

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nature biotechnology 31(8):686–688. https://doi.org/10.1038/nbt.2650

    Article  CAS  PubMed  Google Scholar 

  • Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryotic cell 6(9):1656–1664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song R, Li J, Xie C, Jian W, Yang X (2020) An overview of the molecular genetics of plant resistance to the Verticillium wilt pathogen Verticillium dahliae. International journal of molecular sciences 21(3):1120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Zhai Y, Li L, Yang Z, Ge X, Yang Z, Zhang C, Li F, Ren M (2021) BIN2 negatively regulates plant defence against Verticillium dahliae in Arabidopsis and cotton. Plant Biotechnology Journal 19(10):2097–2112. https://doi.org/10.1111/pbi.13640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storey G, Evans K (1987) Interactions between Globodera pallida juveniles, Verticillium dahliae and three potato cultivars, with descriptions of associated histopathologies. Plant Pathology 36(2):192–200

    Google Scholar 

  • Stotz HU, Mitrousia GK, de Wit PJ, Fitt BD (2014) Effector-triggered defence against apoplastic fungal pathogens. Trends in plant science 19(8):491–500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su YX, Wang GL, Huang ZY, Hu LL, Fu T, Wang XY (2022) Silencing GhIAA43, a member of cotton AUX/IAA genes, enhances wilt resistance via activation of salicylic acid-mediated defenses. Plant Science 314:111126. https://doi.org/10.1016/j.plantsci.2021.111126

    Article  CAS  PubMed  Google Scholar 

  • Subbarao KV, Chassot A, Gordon TR, Hubbard JC, Bonello P, Mullin R, Okamoto D, Davis RM, Koike ST (1995) Genetic relationships and cross pathogenicities of Verticillium dahliae isolates from cauliflower and other crops. Phytopathology 85(10):1105–1112

    Google Scholar 

  • Sufyan M, Daraz U, Hyder S, Zulfiqar U, Iqbal R, Eldin SM, Rafiq F, Mahmood N, Shahzad K, Uzair M, Fiaz S (2023) An overview of genome engineering in plants, including its scope, technologies, progress and grand challenges. Functional & integrative genomics 23(2):119

    CAS  Google Scholar 

  • Sun L, Zhu L, Xu L, Yuan D, Min L, Zhang X (2014) Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway. Nature communications 5(1):1–12

    Google Scholar 

  • Sun M, Zhang Z, Ren Z, Wang X, Sun W, Feng H, Zhao J, Zhang F, Li W, Ma X, Yang D (2021a) The GhSWEET42 glucose transporter participates in Verticillium dahliae infection in cotton. Frontiers in Plant Science 12:690754. https://doi.org/10.3389/fpls.2021.690754

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun YD, Zhong MM, Li YB, Zhang RH, Su L, Xia GX, Wang HY (2021b) GhADF6-mediated actin reorganization is associated with defence against Verticillium dahliae infection in cotton. Molecular Plant Pathology 22(12):1656–1667. https://doi.org/10.1111/mpp.13137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai HH, Goyer C, Platt H, De Koeyer D, Murphy A, Uribe P, Halterman D (2013) Decreased defense gene expression in tolerance versus resistance to Verticillium dahliae in potato. Functional & integrative genomics 13:367–378

    CAS  Google Scholar 

  • Talboys P (1958) Association of tylosis and hyperplasia of the xylem with vascular invasion of the hop by Verticillium albo-atrum. Transactions of the British Mycological Society 41(2):249-IN248

    Google Scholar 

  • Tang Y, Zhang Z, Lei Y, Hu G, Liu J, Hao M, Chen A, Peng Q, Wu J (2019) Cotton WATs modulate SA biosynthesis and local lignin deposition participating in plant resistance against Verticillium dahliae. Frontiers in Plant Science 10:526. https://doi.org/10.3389/fpls.2019.00526

    Article  PubMed  PubMed Central  Google Scholar 

  • Temple SH, DeVay J, Forrester LL (1973) Temperature effects upon development and pathogenicity of defoliating and nondefoliating pathotypes of Verticillium dahliae in leaves of cotton plants. Phytopathology 63:953–958

    Google Scholar 

  • Thaler JS, Owen B, Higgins VJ (2004) The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiology 135(1):530–538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thatcher LF, Manners JM, Kazan K (2009) Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. The Plant Journal 58(6):927–939

    CAS  PubMed  Google Scholar 

  • Thomma BP, Eggermont K, Tierens KF-J, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiology 121(4):1093–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomma BP, Penninckx IA, Cammue BP, Broekaert WF (2001) The complexity of disease signaling in Arabidopsis. Current opinion in immunology 13(1):63–68

    CAS  PubMed  Google Scholar 

  • Tjamos SE, Flemetakis E, Paplomatas EJ, Katinakis P (2005) Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Molecular Plant-Microbe Interactions 18(6):555–561

    CAS  PubMed  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant signaling & behavior 7(12):1621–1633

    CAS  Google Scholar 

  • Tzima A, Paplomatas EJ, Rauyaree P, Kang S (2010) Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen Verticillium dahliae. Fungal Genetics and Biology 47(5):406–415

    CAS  PubMed  Google Scholar 

  • Tzima AK, Paplomatas EJ, Tsitsigiannis DI, Kang S (2012) The G protein β subunit controls virulence and multiple growth-and development-related traits in Verticillium dahliae. Fungal Genetics and Biology 49(4):271–283

    CAS  PubMed  Google Scholar 

  • Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3-Genes Genomes. Genetics 3(12):2233–2238. https://doi.org/10.1534/g3.113.008847

    Article  Google Scholar 

  • Vellosillo T, Vicente J, Kulasekaran S, Hamberg M, Castresana C (2010) Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogens. Plant Physiology 154(2):444–448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veronese P, Narasimhan ML, Stevenson RA, Zhu JK, Weller SC, Subbarao KV, Bressan RA (2003) Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. The Plant Journal 35(5):574–587

    CAS  PubMed  Google Scholar 

  • Vyas VK, Barrasa MI, Fink GR (2015) A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Science advances 1(3):e1500248

    PubMed  PubMed Central  Google Scholar 

  • Wang FX, Ma YP, Yang CL, Zhao PM, Yao Y, Jian GL, Luo YM, Xia GX (2011) Proteomic analysis of the sea-island cotton roots infected by wilt pathogen Verticillium dahliae. Proteomics 11(22):4296–4309

    CAS  PubMed  Google Scholar 

  • Wang X, Wang C, Xie C, Yang X (2014a) Advances in molecular mechanisms of Verticillium pathogenicity and plant resistance to Verticillium wilt. Journal of Henan Agricultural Sciences 43(1):1–6

    Google Scholar 

  • Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014b) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature biotechnology 32(9):947–951. https://doi.org/10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang W, Zhan J, Huang W, Xu H (2015) An efficient PEG-mediated transient gene expression system in grape protoplasts and its application in subcellular localization studies of flavonoids biosynthesis enzymes. Scientia Horticulturae 191:82–89

    CAS  Google Scholar 

  • Wang W, Yuan Y, Yang C, Geng S, Sun Q, Long L, Cai C, Chu Z, Liu X, Wang G, Du X (2016) Characterization, expression, and functional analysis of a novel NAC gene associated with resistance to verticillium wilt and abiotic stress in cotton. G3: Genes, Genomes, Genetics 6(12):3951–3961

    CAS  PubMed  Google Scholar 

  • Wang L, Wu SM, Zhu Y, Fan Q, Zhang ZN, Hu G, Peng QZ, Wu JH (2017a) Functional characterization of a novel jasmonate ZIM-domain interactor (NINJA) from upland cotton (Gossypium hirsutum). Plant Physiology and Biochemistry 112:152–160

    CAS  PubMed  Google Scholar 

  • Wang W, Sun Y, Han L, Su L, Xia G, Wang H (2017b) Overexpression of GhPFN2 enhances protection against Verticillium dahliae invasion in cotton. Science China Life Sciences 60(8):861–867

    CAS  PubMed  Google Scholar 

  • Wang P, Sun Y, Pei YK, Li XC, Zhang XY, Li FG, Hou YX (2018a) GhSNAP33, a t-SNARE protein from Gossypium hirsutum, mediates resistance to Verticillium dahliae infection and tolerance to drought stress. Frontiers in Plant Science 9:896. https://doi.org/10.3389/fpls.2018.00896

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P, Zhang J, Sun L, Ma Y, Xu J, Liang S, Deng J, Tan J, Zhang Q, Tu L, Daniell H (2018b) High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnology Journal 16(1):137–150. https://doi.org/10.1111/pbi.12755

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M (2020a) Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368(6493):844. https://doi.org/10.1126/science.aba5435

    Article  CAS  Google Scholar 

  • Wang J, Song L, Gong X, Xu J, Li M (2020b) Functions of jasmonic acid in plant regulation and response to abiotic stress. International journal of molecular sciences 21(4):1446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Feng B, Zhou JM, Tang D (2020c) Plant immune signaling: advancing on two frontiers. Journal of integrative plant biology 62(1):2–24

    CAS  PubMed  Google Scholar 

  • Wang G, Wang X, Zhang Y, Yang J, Li Z, Wu L, Wu J, Wu N, Liu L, Liu Z, Zhang M (2021a) Dynamic characteristics and functional analysis provide new insights into long non-coding RNA responsive to Verticillium dahliae infection in Gossypium hirsutum. BMC plant biology 21:1–13

    Google Scholar 

  • Wang H, Chen B, Tian J, Kong Z (2021b) Verticillium dahliae VdBre1 is required for cotton infection by modulating lipid metabolism and secondary metabolites. Environmental Microbiology 23(4):1991–2003

    CAS  PubMed  Google Scholar 

  • Wang G, Wang X, Zhang Y, Yang J, Li Z, Wu L, Wu J, Wu N, Liu L, Liu Z, Zhang M (2021c) Dynamic characteristics and functional analysis provide new insights into long non-coding RNA responsive to Verticillium dahliae infection in Gossypium hirsutum. BMC Plant Biology 21:1–3

    Google Scholar 

  • Wang Y, Zhao J, Chen Q, Zheng K, Deng X, Gao W, Pei W, Geng S, Deng Y, Li C, Chen Q (2023) Quantitative trait locus mapping and identification of candidate genes for resistance to Verticillium wilt in four recombinant inbred line populations of Gossypium hirsutum. Plant Science 327:111562

    CAS  PubMed  Google Scholar 

  • Wasternack C (2014) Action of jasmonates in plant stress responses and development—applied aspects. Biotechnology advances 32(1):31–39

    CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany 111(6):1021–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Strnad M (2018) Jasmonates: news on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds. International journal of molecular sciences 19(9):2539

    PubMed  PubMed Central  Google Scholar 

  • Wei F, Shang W, Yang J, Hu X, Xu X (2015) Spatial pattern of Verticillium dahliae microsclerotia and cotton plants with wilt symptoms in commercial plantations. PloS one 10(7):e0132812

    PubMed  PubMed Central  Google Scholar 

  • Wei T, Tang Y, Jia P, Zeng Y, Wang B, Wu P, Quan Y, Chen A, Li Y, Wu J (2021) A cotton lignin biosynthesis gene, GhLAC4, fine-tuned by ghr-miR397 modulates plant resistance against Verticillium dahliae. Frontiers in Plant Science 12:743795. https://doi.org/10.3389/fpls.2021.743795

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen-Jie L, Na W, Chen C, Zhao YP, Hou YX (2022) Identification and expression analysis of arabinogalactan protein genes in cotton reveal the function of GhAGP15 in Verticillium dahliae resistance. Gene 822:146336. https://doi.org/10.1016/j.gene.2022.146336

    Article  CAS  Google Scholar 

  • Wood R (1982) Fungal wilt diseases of plants. JSTOR

    Google Scholar 

  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Després C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Reports 1(6):639–647

    CAS  PubMed  Google Scholar 

  • Wu Y, Zhang L, Zhou J, Zhang X, Feng Z, Wei F, Zhao L, Zhang Y, Feng H, Zhu H (2021) Calcium-dependent protein kinase GhCDPK28 was dentified and involved in Verticillium wilt resistance in cotton. Frontiers in Plant Science 12:772649. https://doi.org/10.3389/fpls.2021.772649

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu N, Li WJ, Chen C, Zhao YP, Hou YX (2022) Analysis of the PRA1 genes in cotton identifies the role of GhPRA1.B1-1A in Verticillium dahliae resistance. Genes 13(5):765. https://doi.org/10.3390/genes13050765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang L, Cai C, Cheng J, Wang L, Wu C, Shi Y, Luo J, He L, Deng Y, Zhang X, Yuan Y (2018) Identification of circularRNAs and their targets in Gossypium under Verticillium wilt stress based on RNA-seq. PeerJ 6:e4500

    PubMed  PubMed Central  Google Scholar 

  • Xiao S, Hu Q, Shen J, Liu S, Yang Z, Chen K, Klosterman SJ, Javornik B, Zhang X, Zhu L (2021a) GhMYB4 downregulates lignin biosynthesis and enhances cotton resistance to Verticillium dahliae. Plant Cell Reports 40:735–751

    CAS  PubMed  Google Scholar 

  • Xiao S, Hu Q, Shen J, Liu S, Yang Z, Chen K, Klosterman SJ, Javornik B, Zhang X, Zhu L (2021b) GhMYB4 downregulates lignin biosynthesis and enhances cotton resistance to Verticillium dahliae. Plant Cell Reports 40(4):735–751. https://doi.org/10.1007/s00299-021-02672-x

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Ming Y, Hu Q, Ye Z, Si H, Liu S, Zhang X, Wang W, Yu Y, Kong J, Klosterman SJ (2023) GhWRKY41 forms a positive feedback regulation loop and increases cotton defense response against Verticillium dahliae by regulating phenylpropanoid metabolism. Plant Biotechnology Journal 2023:1

    Google Scholar 

  • Xie FL, Jones DC, Wang QL, Sun RR, Zhang BH (2015) Small RNA sequencing identifies miRNA roles in ovule and fibre development. Plant Biotechnology Journal 13(3):355–369 https://doi.org/10.1111/pbi.12296

  • Xing J, Chin C-K (2000) Modification of fatty acids in eggplant affects its resistance to Verticilliumdahliae. Physiological and Molecular Plant Pathology 56(5):217–225

    CAS  Google Scholar 

  • Xiong X, Sun S, Li Y, Zhang X, Sun J, Xue F (2019) The cotton WRKY transcription factor GhWRKY70 negatively regulates the defense response against Verticillium dahliae. The Crop Journal 7(3):393–402

    CAS  Google Scholar 

  • Xiong XP, Sun SC, Zhang XY, Li YJ, Liu F, Zhu QH, Xue F, Sun J (2020) GhWRKY70D13 regulates resistance to Verticillium dahliae in cotton through the ethylene and jasmonic acid signaling pathways. Frontiers in Plant Science 11:69. https://doi.org/10.3389/fpls.2020.00069

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong XP, Sun SC, Zhu QH, Zhang XY, Li YJ, Liu F, Xue F, Sun J (2021a) The cotton lignin biosynthetic gene Gh4CL30 regulates lignification and phenolic content and contributes to Verticillium wilt resistance. Molecular Plant-Microbe Interactions 34(3):240–254. https://doi.org/10.1094/Mpmi-03-20-0071-R

    Article  CAS  PubMed  Google Scholar 

  • Xiong XP, Sun SC, Zhu QH, Zhang XY, Liu F, Li YJ, Xue F, Sun J (2021b) Transcriptome analysis and RNA interference reveal GhGDH2 regulating cotton resistance to Verticillium wilt by JA and SA signaling pathways. Frontiers in Plant Science 12:654676. https://doi.org/10.3389/fpls.2021.654676

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y-H, Wang J-W, Wang S, Wang J-Y, Chen X-Y (2004) Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-δ-cadinene synthase-A. Plant Physiology 135(1):507–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Zhu L, Tu L, Guo X, Long L, Sun L, Gao W, Zhang X (2011a) Differential gene expression in cotton defence response to Verticillium dahliae by SSH. Journal of Phytopathology 159(9):606–615

    CAS  Google Scholar 

  • Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L, Zhang X (2011b) Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. Journal of experimental botany 62(15):5607–5621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Zhu LF, Zhang XL (2013) Research on resistance mechanism of cotton to Verticillium wilt. Acta Agronomica Sinica 38(9):1553–1560

    Google Scholar 

  • Xu L, Zhang W, He X, Liu M, Zhang K, Shaban M, Sun L, Zhu J, Luo Y, Yuan D, Zhang X (2014) Functional characterization of cotton genes responsive to Verticillium dahliae through bioinformatics and reverse genetics strategies. Journal of experimental botany 65(22):6679–6692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Wang X, Li Y, Zeng J, Wang G, Deng C, Guo W (2018) Host-induced gene silencing of a regulator of G protein signalling gene (Vd RGS 1) confers resistance to Verticillium wilt in cotton. Plant Biotechnology Journal 16(9):1629–1643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Jue D, Li W, Zhang R, Chen M, Yang Q (2013) Identification of MiRNA from eggplant (Solanum melongena L.) by small RNA deep sequencing and their response to Verticillium dahliae infection. PloS one 8(8):e72840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CL, Liang S, Wang HY, Han LB, Wang FX, Cheng HQ, Wu XM, Qu ZL, Wu JH, Xia GX (2015a) Cotton major latex protein 28 functions as a positive regulator of the ethylene responsive factor 6 in defense against Verticillium dahliae. Molecular plant 8(3):399–411

    CAS  PubMed  Google Scholar 

  • Yang C, Lu X, Ma B, Chen S-Y, Zhang J-S (2015b) Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. Molecular plant 8(4):495–505

    CAS  PubMed  Google Scholar 

  • Yang J, Zhang Y, Wang X, Wang W, Li Z, Wu J, Wang G, Wu L, Zhang G, Ma Z (2018a) HyPRP1 performs a role in negatively regulating cotton resistance to V-dahliae via the thickening of cell walls and ROS accumulation. Bmc Plant Biology 18:339. https://doi.org/10.1186/s12870-018-1565-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YW, Chen TZ, Ling XT, Ma ZQ (2018b) Gbvdr6, a gene encoding a receptor-like protein of cotton (Gossypium barbadense), confers resistance to Verticillium wilt in Arabidopsis and upland cotton. Frontiers in Plant Science 8:2272. https://doi.org/10.3389/fpls.2017.02272

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Zhang Y, Guan R, Li S, Xu X, Zhang S, Xu J (2020) Co-regulation of indole glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling pathways. Journal of integrative plant biology 62(11):1780–1796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Xie MX, Wang XF, Wang GN, Zhang Y, Li ZK, Ma ZY (2021) Identification of cell wall-associated kinases as important regulators involved in Gossypium hirsutum resistance to Verticillium dahliae. Bmc Plant Biology 21(1):220. https://doi.org/10.1186/s12870-021-02992-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Ge Q, Wan S, Sun Z, Chen Y, Li Y, Liu Q, Gong J, Xiao X, Lu Q, Shi Y (2023) Genome-wide identification and characterization of the PPO gene family in cotton (Gossypium) and their expression variations responding to Verticillium wilt infection. Genes 14(2):477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, Yunping S (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant molecular biology 60(1):107–124

    PubMed  Google Scholar 

  • Yi F, An G, Song A, Cheng K, Liu J, Wang C, Wu S, Wang P, Zhu J, Liang Z, Chang Y (2023) Strigolactones positively regulate Verticillium wilt resistance in cotton via crosstalk with other hormones. Plant Physiology 2023:kiad053

    Google Scholar 

  • Yin Z, Li Y, Han X, Shen F (2012) Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae–inoculated cotton roots. PloS one 7(4):e35765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yinhua J, Xiwen W, Junling S, Zhongli Z, Zaoe P, Shoupu H, Baoyin P, Liru W, Xiongming D (2014) Association mapping of resistance to Verticillium wilt in Gossypium hirsutum L. germplasm. African journal of Biotechnology 13:31

    Google Scholar 

  • Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, Cai B, Zhou JM, He SY, Xin XF (2021a) Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592(7852):105–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan M, Ngou BPM, Ding P, Xin X-F (2021b) PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology 62:102030

    CAS  PubMed  Google Scholar 

  • Zeng H, Chen R, Luo X, Tian J (2016) Isolation and anti-Verticillium dahliae activity from Bacillus axarquiensis TUBP1 protein. Process Biochemistry 51(10):1691–1698

    CAS  Google Scholar 

  • Zipfel C (2014) Plant pattern-recognition receptors. Trends in immunology 35(7):345–351

    CAS  PubMed  Google Scholar 

  • Zhang BH (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. Journal of Experimental Botany 66(7):1749–1761 https://doi.org/10.1093/jxb/erv013

  • Zhang DQ, Zhang ZY, Unver T, Zhang BH (2021) CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research 29:207–221. https://doi.org/10.1016/j.jare.2020.10.003

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S (2007) A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell host & microbe 1(3):175–185

    CAS  Google Scholar 

  • Zhang W-W, Jian G-L, Jiang T-F, Wang S-Z, Qi F-J, Xu S-C (2012) Cotton gene expression profiles in resistant Gossypium hirsutum cv. Zhongzhimian KV1 responding to Verticillium dahliae strain V991 infection. Molecular biology reports 39:9765–9774

    CAS  PubMed  Google Scholar 

  • Zhang Y, Wang XF, Ding ZG, Ma Q, Zhang GR, Zhang SL, Li ZK, Wu LQ, Zhang GY, Ma ZY (2013) Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement. BMC genomics 14(1):1–18

    Google Scholar 

  • Zhang T, Jin Y, Zhao J-H, Gao F, Zhou B-J, Fang Y-Y, Guo H-S (2016a) Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticillium dahliae. Molecular plant 9(6):939–942

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhou G, Shabala S, Koutoulis A, Shabala L, Johnson P, Li C, Zhou M (2016b) Identification of aerenchyma formation-related QTL in barley that can be effective in breeding for waterlogging tolerance. Theoretical and Applied Genetics 129(6):1167–1177

    CAS  PubMed  Google Scholar 

  • Zhang YL, Li ZF, Feng ZL, Feng HJ, Shi YQ, Zhao LH, Zhang XL, Zhu HQ (2016c) Functional analysis of the pathogenicity-related gene VdPR1 in the vascular wilt fungus Verticillium dahliae. Plos One 11(11):e0166000. https://doi.org/10.1371/journal.pone.0166000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YW, Bai Y, Wu GH, Zou SH, Chen YF, Gao CX, Tang DZ (2017) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant Journal 91(4):714–724. https://doi.org/10.1111/tpj.13599

    Article  CAS  Google Scholar 

  • Zhang SQ, Xu ZP, Sun H, Sun LQ, Shaban M, Yang XY, Zhu LF (2019a) Genome-wide identification of papain-like cysteine proteases in Gossypium hirsutum and functional characterization in response to Verticillium dahliae. Frontiers in Plant Science 10:134. https://doi.org/10.3389/fpls.2019.00134

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wu L, Wang X, Chen B, Zhao J, Cui J, Li Z, Yang J, Wu L, Wu J, Zhang G (2019b) The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants. Molecular plant pathology 20(3):309–322

    CAS  PubMed  Google Scholar 

  • Zhang Y, Wu L, Wang X, Chen B, Zhao J, Cui J, Li Z, Yang J, Wu L, Wu J, Zhang G (2019c) The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants. Molecular Plant Pathology 20(3):309–322. https://doi.org/10.1111/mpp.12755

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Zhao Y-L, Jin Y, Zhang T, Guo H-S (2014) Colonization process of Arabidopsis thaliana roots by a green fluorescent protein-tagged isolate of Verticillium dahliae. Protein & cell 5(2):94–98

    Google Scholar 

  • Zhao Y-L, Zhou T-T, Guo H-S (2016) Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae. PLoS pathogens 12(7):e1005793

    PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Chen W, Cui Y, Sang X, Lu J, Jing H, Wang W, Zhao P, Wang H (2021a) Detection of candidate genes and development of KASP markers for Verticillium wilt resistance by combining genome-wide association study, QTL-seq and transcriptome sequencing in cotton. Theoretical and Applied Genetics 134(4):1063–1081

    CAS  PubMed  Google Scholar 

  • Zhao Y, Jing H, Zhao P, Chen W, Li X, Sang X, Lu J, Wang H (2021b) GhTBL34 is associated with Verticillium wilt resistance in cotton. International Journal of Molecular Sciences 22(17):9115. https://doi.org/10.3390/ijms22179115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YP, Shen JL, Li WJ, Wu N, Chen C, Hou YX (2021c) Evolutionary and characteristic analysis of RING-DUF1117 E3 ubiquitin ligase genes in Gossypium discerning the role of GhRDUF4D in Verticillium dahliae resistance. Biomolecules 11(8):1145. https://doi.org/10.3390/biom11081145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Xu J, Wang Y, Liu J, Dong C, Zhao L, Ai N, Xu Z, Guo Q, Feng G, Xu P (2022) Membrane localized GbTMEM214s participate in modulating cotton resistance to Verticillium wilt. Plants-Basel 11(18):2342. https://doi.org/10.3390/plants11182342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhen X-H, Li Y-Z (2004) Ultrastructural changes and location of β-1, 3-glucanase in resistant and susceptible cotton callus cells in response to treatment with toxin of Verticillium dahliae and salicylic acid. Journal of plant physiology 161(12):1367–1377

    CAS  PubMed  Google Scholar 

  • Zhong R, Richardson EA, Ye Z-H (2007) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. The Plant Cell 19(9):2776–2792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JM, Zhang YL (2020) Plant immunity: danger perception and signaling. Cell 181(5):978–989. https://doi.org/10.1016/j.cell.2020.04.028

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wu Y, Zhang X, Zhao L, Feng Z, Wei F, Zhang Y, Feng H, Zhou Y, Zhu H (2022a) MPK homolog GhNTF6 was involved in cotton against Verticillium wilt by interacted with VdEPG1. International Journal of Biological Macromolecules 195:456–465. https://doi.org/10.1016/j.ijbiomac.2021.12.037

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Zhao L, Wu Y, Zhang X, Cheng S, Wei F, Zhang Y, Zhu H, Zhou Y, Feng Z, Feng H (2022b) A DEK domain-containing protein GhDEK2D mediated Gossypium hirsutum enhanced resistance to Verticillium dahliae. Plant Signaling & Behavior 17:1. https://doi.org/10.1080/15592324.2021.2024738

    Article  CAS  Google Scholar 

  • Zhu KY, Palli SR (2020) Mechanisms, applications, and challenges of insect RNA interference. Annual review of entomology 65:1

    Google Scholar 

  • Zhu Q-H, Fan L, Liu Y, Xu H, Llewellyn D, Wilson I (2013) miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. PloS one 8(12):e84390

    PubMed  PubMed Central  Google Scholar 

  • Zhu D, Zhang X, Zhou J, Wu Y, Zhang X, Feng Z, Wei F, Zhao L, Zhang Y, Shi Y, Feng H (2021a) Genome-wide analysis of ribosomal protein GhRPS6 and its role in cotton Verticillium wilt resistance. International journal of molecular sciences 22(4):1795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Zhang X, Zhou J, Wu Y, Zhang X, Feng Z, Wei F, Zhao L, Zhang Y, Shi Y, Feng H (2021b) Genome-wide analysis of ribosomal protein GhRPS6 and its role in cotton Verticillium wilt resistance. International Journal of Molecular Sciences 22(4):1795. https://doi.org/10.3390/ijms22041795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Song J, Dhar N, Shan Y, Ma XY, Wang XL, Chen JY, Dai XF, Li R, Wang ZS (2021c) Transcriptome analysis of a cotton cultivar provides insights into the differentially expressed genes underlying heightened resistance to the devastating Verticillium wilt. Cells 10(11):2961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YT, Hu XQ, Wang P, Wang HW, Ge XY, Li FG, Hou YX (2022) GhODO1, an R2R3-type MYB transcription factor, positively regulates cotton resistance to Verticillium dahliae via the lignin biosynthesis and jasmonic acid signaling pathway. International Journal of Biological Macromolecules 201:580–591. https://doi.org/10.1016/j.ijbiomac.2022.01.120

    Article  CAS  PubMed  Google Scholar 

  • Zuo K, Wang J, Wu W, Chai Y, Sun X, Tang K (2005) Identification and characterization of differentially expressed ESTs of Gossypium barbadense infected by Verticillium dahliae with suppression subtractive hybridization. Molecular Biology 39(2):191–199

    CAS  Google Scholar 

  • Zuo K-J, Qin J, Zhao J-Y, Ling H, Zhang L-D, Cao Y-F, Tang K-X (2007) Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene 391(1-2):80–90

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the Institute of Cotton Research, CAAS, Anyang.

Funding

This work was supported by the National Key R&D Program of China (2021YFE0101200) and the National Natural Science Foundation of China (32272090, 32072023, 32171994).

Author information

Authors and Affiliations

Authors

Contributions

FL, BH, and MJU devised the idea. MJU and ZJ wrote the main manuscript text. YM, RB, AAA, YH, HG, and YX prepared figures. YW, ZZ, and XC prepared tables. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Fang Liu or Baohong Zhang.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Human and animal ethics

Not applicable.

Consent for publication

All co-authors gave consent for publication of this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umer, M.J., Zheng, J., Yang, M. et al. Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer. Funct Integr Genomics 23, 142 (2023). https://doi.org/10.1007/s10142-023-01065-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-023-01065-5

Keywords

Navigation