Skip to main content
Log in

Sugar transporter ZmSWEET1b is responsible for assimilate allocation and salt stress response in maize

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Sugar efflux transporter SWEET family is involved in multiple biological processes, from nectar secretion, pollen fertility to seed filling. Although roles of SWEETs in abiotic stress adaption have been revealed mainly in reference organism Arabidopsis, cereal crops SWEETs responses to abiotic stimulation remain largely elusive. Here, we report the characterization of maize SWEET family member ZmSWEET1b, with emphasis on its response to salinity stress. ZmSWEET1b is a canonical sugar transporter, characteristic of seven transmembrane helices and plasma membrane localization. ZmSWEET1b and its rice ortholog OsSWEET1b in phylogenetic clade I underwent convergent selection during evolution. Two independent knockout lines were created by the CRISPR/Cas9 method to functionally characterized ZmSWEET1b. Sucrose and fructose contents are significantly decreased in ZmSWEET1b knockout lines. Mature leaves of ZmSWEET1b-edited lines exhibit chlorosis, reminiscent of senescence-like phenotype. Ears and seeds of ZmSWEET1b knockout lines are small. Upon salinity treatment, ZmSWEET1b-edited lines become more wilted. Transcriptional abundance of genes for Na+ efflux from roots to the rhizosphere, including ZmSOS1, ZmH+-ATPASE 2, and ZmH+-ATPASE 8, is decreased in salt-treated ZmSWEET1b knockout lines. These findings indicate that convergently selected sugar transporter ZmSWEET1b is important for maize plant development and responses to salt stress. The manipulation of ZmSWEET1b may represent a feasible way forward in the breeding of salinity tolerant ideotypes through the optimization of assimilate allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information.

References

  • Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature 575:109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker RF, Leach KA, Boyer NR, Swyers MJ, Benitez-Alfonso Y, Skopelitis T, Luo A, Sylvester A, Jackson D, Braun DM (2016) Sucrose transporter ZmSut1 expression and localization uncover new insights into sucrose phloem loading. Plant Physiol 172:1876–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun DM (2022) Phloem loading and unloading of sucrose: what a long, strange trip from source to sink. Annu Rev Plant Biol 73:553–584

    Article  PubMed  Google Scholar 

  • Carpaneto A, Geiger D, Bamberg E, Sauer N, Fromm J, Hedrich R (2005) Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. J Biol Chem 280:21437–21443

    Article  CAS  PubMed  Google Scholar 

  • Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE, Londoño A, Samuels AL, Frommer WB (2015) A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell 27:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Hu T, Li X, Song CP, Zhu JK, Chen L, Zhao Y (2022a) Phosphorylation of SWEET sucrose transporters regulates plant root:shoot ratio under drought. Nat Plants 8:68–77

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Chen L, Zhang X, Yang N, Guo J, Wang M, Ji S, Zhao X, Yin P, Cai L, Xu J, Zhang L, Han Y, Xiao Y, Xu G, Wang Y, Wang S, Wu S, Yang F, Jackson D, Cheng J, Chen S, Sun C, Qin F, Tian F, Fernie AR, Li J, Yan J, Yang X (2022b) Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science 375:eabg7985

  • Cheng J, Wang Z, Yao F, Gao L, Ma S, Sui X, Zhang Z (2015) Down-regulating CsHT1, a cucumber pollen-specific hexose transporter, inhibits pollen germination, tube growth, and seed development. Plant Physiol 168:635–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, Qu XQ, Braun DM, Frommer WB (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol 25:53–62

    Article  CAS  PubMed  Google Scholar 

  • Klemens PA, Patzke K, Deitmer J, Spinner L, Le Hir R, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus HE (2013) Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol 163:1338–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klepek YS, Geiger D, Stadler R, Klebl F, Landouar-Arsivaud L, Lemoine R, Hedrich R, Sauer N (2005) Arabidopsis POLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H+-Symport of numerous substrates, including myo-inositol, glycerol, and ribose. Plant Cell 7:204–218

    Article  Google Scholar 

  • Le Hir R, Spinner L, Klemens PA, Chakraborti D, de Marco F, Vilaine F, Wolff N, Lemoine R, Porcheron B, Géry C, Téoulé E, Chabout S, Mouille G, Neuhaus HE, Dinant S, Bellini C (2015) Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Mol Plant 8:1687–1690

    Article  PubMed  Google Scholar 

  • Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7:1494–1496

    Article  CAS  PubMed  Google Scholar 

  • Li W, Chen Y, Wang Y, Zhao J, Wang Y (2022) Gypsy retrotransposon-derived maize lncRNA GARR2 modulates gibberellin response. Plant J 110:1433–1446

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Liu HJ, Yan J, Tian F (2021) Natural variation in crops: realized understanding, continuing Promise. Annu Rev Plant Biol 72:357–385

    Article  CAS  PubMed  Google Scholar 

  • Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, Kessler D, Klinkenberg PM, Gorder MK, Hou BH, Qu XQ, Carter CJ, Baldwin IT, Frommer WB (2014) Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508:546–549

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang Y, Yang C, Tian Z, Li J (2016) AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Sci Rep 6:24563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Zhang D, Miao Q, Yang J, Xuan Y, Hu Y (2017) Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling. Plant Cell Physiol 58:863–873

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Melzer M, Truernit E, Hümmer C, Besenbeck R, Stadler R, Sauer N (2000) AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer. Plant J 24:869–882

    Article  CAS  PubMed  Google Scholar 

  • Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, Bileschi ML, Bork P, Bridge A, Colwell L, Gough J, Haft DH, Letunić I, Marchler-Bauer A, Mi H, Natale DA, Orengo CA, Pandurangan AP, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Bateman A (2023) InterPro in 2022. Nucleic Acids Res 51:D418–D427

    Article  PubMed  Google Scholar 

  • Reinders A, Sivitz AB, Ward JM (2012) Evolution of plant sucrose uptake transporters. Front Plant Sci 3:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riesmeier JW, Willmitzer L, Frommer WB (1992) Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J 11:4705–4713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz A, Beyhl D, Marten I, Wormit A, Neuhaus E, Poschet G, Büttner M, Schneider S, Sauer N, Hedrich R (2011) Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Plant J 68:129–136

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Park JM, Kang SK, Kim SG, Park CM (2011) An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233:189–200

    Article  CAS  PubMed  Google Scholar 

  • Sivitz AB, Reinders A, Ward JM (2008) Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation. Plant Physiol 147:92–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosso D, Luo D, Li QB, Sasse J, Yang J, Gendrot G, Suzuki M, Koch KE, McCarty DR, Chourey PS, Rogowsky PM, Ross-Ibarra J, Yang B, Frommer WB (2015) Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet 47:1489–1493

    Article  CAS  PubMed  Google Scholar 

  • Sun MX, Huang XY, Yang J, Guan YF, Yang ZN (2013) Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reprod 26:83–91

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis Version 11. Mol Biol Evol 38:3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Yao L, Hao X, Li N, Qian W, Yue C, Ding C, Zeng J, Yang Y, Wang X (2018) Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. Plant Mol Biol 96:577–592

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yokosho K, Guo R, Whelan J, Ruan YL, Ma JF, Shou H (2019) The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiol 180:2133–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Liu S, Wang J, Yokosho K, Zhou B, Yu YC, Liu Z, Frommer WB, Ma JF, Chen LQ, Guan Y, Shou H, Tian Z (2020) Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev 7:1776–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weise A, Barker L, Kühn C, Lalonde S, Buschmann H, Frommer WB, Ward JM (2000) A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants. Plant Cell 12:1345–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen S, Neuhaus HE, Cheng J, Bie Z (2022) Contributions of sugar transporters to crop yield and fruit quality. J Exp Bot 73:2275–2289

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Sugio A, White FF (2006) Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA 103:10503–10508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Luo D, Yang B, Frommer WB, Eom JS (2018) SWEET11 and 15 as key players in seed filling in rice. New Phytol 218:604–615

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Ding C, Hao X, Zeng J, Yang Y, Wang X, Wang L (2020) CsSWEET1a and CsSWEET17 mediate growth and freezing tolerance by promoting sugar transport across the plasma membrane. Plant Cell Physiol 61:1669–1682

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Chu Z, Li X, Xu C, Wang S (2010) The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22:3164–3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31571671), the High-end Talent Project of Yangzhou University (18HTYZU12), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

YJW designed the research. YTW, SSW, WHD, YDC, and ZTZ prepared Figs. 1, 2, and 3. YTW, SSW, YHD, and WL prepared Figs. 4 and 5. YJW wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yijun Wang.

Ethics declarations

Ethics approval

Not applicable.

Competing interest

The authors declare no competing interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key message

• Plasma membrane–localized sugar transporter ZmSWEET1b is important for maize assimilate allocation and salinity stress response.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

Domain distribution in ZmSWEET1b protein. (PNG 146 kb)

Fig. S2

Sequencing of edited region 1 in ZmSWEET1b. (PNG 390 kb)

High resolution image (TIF 1091 kb)

Fig. S3

Sequencing of edited region 2 in ZmSWEET1b. (PNG 413 kb)

High resolution image (TIF 1092 kb)

Table S1

Primers used in this study. (DOCX 16 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wang, S., Du, W. et al. Sugar transporter ZmSWEET1b is responsible for assimilate allocation and salt stress response in maize. Funct Integr Genomics 23, 137 (2023). https://doi.org/10.1007/s10142-023-01062-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-023-01062-8

Keywords

Navigation