Skip to main content
Log in

Dissection of valine-glutamine genes and their responses to drought stress in Arachis hypogaea cv. Tifrunner

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Valine-glutamine sequences (VQs) interact with WRKY transcription factors (TFs), forming VQ-WRKY protein complexes crucial for plant development and response to environmental changes. Cultivated peanut (Arachis hypogaea) is a tetraploid from A. duranensis and A. ipaensis cross. The Arachis spp. WRKY TFs have been identified, but Arachis VQs are largely unknown. This study identified VQs in A. duranensis, A. ipaensis, A. monticola, A. hypogaea cv. Fuhuasheng, A. hypogaea cv. Shitouqi, and A. hypogaea cv. Tifrunner. The study analyzed the homologous relationships between VQs in these Arachis spp. The VQ drought-tolerant genes were detected and VQ-WRKY interactions were determined in A. hypogaea cv. Tifrunner. The results showed that tetraploid Arachis spp. retained duplicated VQs, but lost ancestral VQs after allopolyploidization. The number of VQs in A. monticola, A. hypogaea cv. Fuhuasheng, and A. hypogaea cv. Shitouqi increased relative to their diploid ancestors. RNA-seq and quantitative real-time PCR experiments confirmed that three AhTVQs tolerate drought stress in A. hypogaea cv. Tifrunner. However, evidence of VQ-WRKY interaction for drought stress response is lacking in A. hypogaea cv. Tifrunner. Nevertheless, this study identified VQ-WRKY interactions, which possibly have multiple functions in A. hypogaea cv. Tifrunner. Altogether, this study dissected Arachis VQs, providing insights into Arachis VQ evolution and drought function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Babitha KC, Ramu SV, Pruthvi V et al (2013) Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis. Transgenic Res 22:327–341

    Article  CAS  PubMed  Google Scholar 

  • Bertioli DJ, Abernathy B, Seijo G et al (2020) Evaluating two different models of peanut’s origin. Nat Genet 52:557–559

    Article  CAS  PubMed  Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L et al (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438–446

    Article  CAS  PubMed  Google Scholar 

  • Bertioli DJ, Jenkins J, Clevenger J et al (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 51:877–884

    Article  CAS  PubMed  Google Scholar 

  • Bertioli DJ, Seijo G, Freitas FO et al (2011) An overview of peanut and its wild relatives. Plant Genet Resour Charact Util 9:134–149

    Article  Google Scholar 

  • Cao Y, Meng D, Abdullah M et al (2018) Genome wide identification, evolutionary, and expression analysis of VQ genes from two Pyrus species. Genes 9:224

    Article  PubMed Central  CAS  Google Scholar 

  • Chen C, Chen H, Zhang Y et al (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Hu Y, Vannozzi A et al (2017) The WRKY transcription factor family in model plants and crops. Crit Rev Plant Sci 36:311–335

    Article  Google Scholar 

  • Chen H, Lai Z, Shi J et al (2010) Role of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10:281

  • Chen L, Song Y, Li S et al (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta Gene Regul Mech 1819:120–128

    Article  CAS  Google Scholar 

  • Chen X, Li C, Wang H et al (2019a) WRKY transcription factors: evolution, binding, and action. Phytopathol Res 1:13

    Article  Google Scholar 

  • Chen X, Li H, Pandey MK et al (2016) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Natl Acad Sci USA 113:6785–6790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Lu Q, Liu H et al (2019b) Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant 12:920–934

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Zhou Y, Yang Y et al (2012) Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors. Plant Physiol 159:810–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou KC, Shen HB (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5:e11335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clevenger J, Chu Y, Scheffler B et al (2016) A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci 7:1446

    Article  PubMed  PubMed Central  Google Scholar 

  • Darriba D, Taboada GL, Doallo R et al (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165

    Article  CAS  PubMed  Google Scholar 

  • Dash S, Cannon EKS, Kalberer SR et al (2016) PeanutBase and other bioinformatic resources for peanut. In: Stalker HT, Wilson RF (eds) Peanuts Genetics, Processing, and Utilization. AOCS Press, pp 241–252. https://www.sciencedirect.com/science/article/pii/B9781630670382000083

  • Eulgem T, Rushton P, Robatzek S et al (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Somssich I (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Mistry J, Schuster-Böckler B et al (2006) Pfam:clan, web tools and services. Nucleic Acids Res 34:247–251

    Article  CAS  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C et al (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Chen J, Yang J et al (2018) Identification, characterization and expression analysis of the VQ motif-containing gene family in tea plant (Camellia sinensis). BMC Genomics 19:710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hilu KW, Stalker HT (1995) Genetic relationships between peanut and wild species of Arachis sect. Arachis (Fabaceae): Evidence from RAPDs. Plant Syst Evol 198:167–178

    Article  CAS  Google Scholar 

  • Hu Y, Chen L, Wang H et al (2013) Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J 74:730–745

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Ma S, Ye N et al (2017) WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59:86–101

    Article  CAS  PubMed  Google Scholar 

  • Jiang SY, Sevugan M, Ramachandran S (2018) Valine-glutamine (VQ) motif coding genes are ancient and non-plant-specific with comprehensive expression regulation by various biotic and abiotic stresses. BMC Genomics 19:342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang YJ, Liang G, Yu DQ (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 5:1375–1388

    Article  CAS  PubMed  Google Scholar 

  • Jing Y, Lin R (2015) The VQ motif-containing protein family of plant-specific transcriptional regulators. Plant Physiol 169:371–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DY, Kwon SI, Choi C et al (2013) Expression analysis of rice VQ genes in response to biotic and abiotic stresses. Gene 529:208–214

    Article  CAS  PubMed  Google Scholar 

  • Lai Z, Li Y, Wang F et al (2011) Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. Plant Cell 23:3834–3841

    Article  CAS  Google Scholar 

  • Leal-Bertioli SCM, Bertioli DJ, Guimarães PM et al (2012) The effect of tetraploidization of wild Arachis on leaf morphology and other drought-related traits. Environ Exp Bot 84:17–24

    Article  Google Scholar 

  • Lei R, Li X, Ma Z et al (2017) Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function. Plant J 91:962–976

    Article  CAS  PubMed  Google Scholar 

  • Leitch I, Bennett J (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma 12:323

    Article  CAS  Google Scholar 

  • Li S, Fu Q, Chen L et al (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1251

    Article  CAS  PubMed  Google Scholar 

  • Ling L, Qu Y, Zhu J et al (2019) Genome-wide identification and expression analysis of the VQ gene family in Cicer arietinum and Medicago truncatula. Peer J 8:e8471

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene wxpression sata using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Morgante CV, Guimarães PM, Martins ACQ et al (2011) Reference genes for quantitative reverse transcription-polymerase chain reaction expression studies in wild and cultivated peanut. BMC Res Notes 4:339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen LT, Schmidt HA, von Haeseler A et al (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perruc E, Charpenteau M, Ramirez BC et al (2004) A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J 38:410–420

    Article  CAS  PubMed  Google Scholar 

  • Phukan UJ, Jeena GS, Shukla RK (2016) WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci 7:760

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu YP, Yu DQ (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47

    Article  CAS  Google Scholar 

  • Ren XZ, Chen ZZ, Liu Y et al (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63:417–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinerson CI, Rabara RC, Tripathi QJ et al (2015) The evolution of WRKY transcription factors. BMC Plant Biol 15:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rombauts S, Déhais P, Van Montagu M et al (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27:295–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roulin A, Auer PL, Libault M et al (2013) The fate of duplicated genes in a polyploid plant genome. Plant J 73:143–153

    Article  CAS  PubMed  Google Scholar 

  • Rushton DL, Tripathi P, Rabara RC et al (2012) WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J 10:2–11

    Article  CAS  PubMed  Google Scholar 

  • Rushton P, Somssich I, Ringler P et al (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltis PS, Marchant DB, Van de Peer Y et al (2015) Polyploidy and genome evolution in plants. Curr Opin Genet Dev 35:119–125

    Article  CAS  PubMed  Google Scholar 

  • Song H, Guo Z, Hu X et al (2019a) Evolutionary balance between LRR domain loss and young NBS-LRR genes production governs disease resistance in Arachis hypogaea cv. Tifrunner. BMC Genomics 20:844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song H, Sun J, Yang G (2018a) Comparative analysis of selection mode reveals different evolutionary rate and expression pattern in Arachis duranensis and Arachis ipaënsis duplicated genes. Plant Mol Biol 98:349–361

    Article  CAS  PubMed  Google Scholar 

  • Song H, Sun J, Yang G (2019b) The characteristic of Arachis duranensis-specific genes and their potential function. Gene 705:60–66

    Article  CAS  PubMed  Google Scholar 

  • Song H, Sun J, Yang G (2019c) Old and young duplicate genes reveal different responses to environmental changes in Arachis duranensis. Mol Gen Genomics 294:1199–1209

    Article  CAS  Google Scholar 

  • Song H, Sun W, Yang G et al (2018b) WRKY transcription factors in legumes. BMC Plant Biol 18:243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song H, Wang P, Lin JY et al (2016a) Genome-wide identification and characterization of WRKY gene family in peanut. Front Plant Sci 7:534

    PubMed  PubMed Central  Google Scholar 

  • Song W, Zhao H, Zhang X et al (2016b) Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize. Front Plant Sci 6:1177

    PubMed  PubMed Central  Google Scholar 

  • Song Y, Jing S, Yu D (2010) Overexpression of the stress-induced OsWRKY08 improves osmotic stress tolerance in Arabidopsis. Chin Sci Bull 54:4671–4678

    Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P, Rabara RC, Rushton PJ (2014) A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta 239:255–266

    Article  CAS  PubMed  Google Scholar 

  • Ulker B, Somssich I (2004) WRKY transcription factors: From DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y, Ashman TL, Soltis PS et al (2021) Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell. 33:182-196. https://doi.org/10.1093/plcell/koaa1015

  • Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18:411–424

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Vannozzi A, Wang G et al (2015) A comprehensive survey of the grapevine VQ gene family and its transcriptional correlation with WRKY proteins. Front Plant Sci 6:417

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Du B, Liu M et al (2013) Arabidopsis transcription factor WRKY33 is involved in drought by directly regulating the expression of CesA8. Am J Plant Sci 4:21–27

    Article  CAS  Google Scholar 

  • Wang X, Zhang H, Sun G et al (2014) Identification of active VQ motif-containing genes and the expression patterns under low nitrogen treatment in soybean. Gene 543:237–243

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jiang Z, Li Z et al (2019) Genome-wide identification and expression analysis of the VQ gene family in soybean (Glycine max). Peer J 7:e7509

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu H, Zhu D et al (2017) Genome-wide analysis of VQ motif-containing proteins in Moso bamboo (Phyllostachys edulis). Planta 246:165–181

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  CAS  PubMed  Google Scholar 

  • Wu XL, Shiroto Y, Kishitani S et al (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    Article  CAS  PubMed  Google Scholar 

  • Yin D, Ji C, Ma X et al (2018) Genome of an allotetraploid wild peanut Arachis monticola: a de novo assembly. GigaScience 7:giy066

    Article  PubMed Central  CAS  Google Scholar 

  • Yuan G, Qian Y, Ren Y et al (2021) The role of plant-specific VQ motif-containing proteins: an ever-thickening plot. Plant Physiol Biochem 159:12–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Wang F, Li J et al (2015) Genome-wide identification and analysis of the VQ motif-containing protein family in Chinese cabbage (Brassica rapa L. ssp. Pekinensis). Int J Mol Sci 16:28683–28704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang L, Ji Y et al (2022) Arabidopsis SIGMA FACTOR BINDING PROTEN1 (SIB1) and SIB2 inhibit WRKY75 function in abscisic acid-mediated leaf senescence and seed germination. J Exp Bot 73:11-26. https://doi.org/10.1093/jxb/erab1391

  • Zhang Y, Wang L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yin D, Song H (2020a) Genome-wide identification and characterization of gene families in Arachis: methods and strategies. Front Genet 11:525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhou Y, ZHang D. et al (2020b) PtrWRKY75 overexpression reduces stomatal aperture and improves drought tolerance by salicylic acid -induced reactive oxygen species accumulation in polar. Environ Exp Bot 176:104117

    Article  CAS  Google Scholar 

  • Zhao KX, Chu SS, Zhang XD et al (2019) AtWRKY21 negatively regulates tolerance to osmotic stress in Arabidopsis. Environ Exp Bot 169:103920

    Article  CAS  Google Scholar 

  • Zhao N, He M, Li L et al (2020) Identification and expression analysis of WRKY gene family under drought stress in peanut (Arachis hypogaea L.). PLoS One 15:e0231396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong Y, Guo C, Chu J et al (2018) Microevolution of the VQ gene family in six species of Fragaria. Genome 61:49–57

    Article  CAS  PubMed  Google Scholar 

  • Zhuang W, Chen H, Yang M et al (2019) The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet 51:865–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Natural Science Foundation of Shandong Province, China (ZR2019QC017), Start-up Foundation for High Talents of Qingdao Agricultural University (No. 665/1120012), the first Class Grassland Science Discipline Program of Shandong Province, China, and Shandong Modern Agricultural Industrial and Technical System (SDAIT-23-01).

Author information

Authors and Affiliations

Authors

Contributions

H. S. conceived and designed this research, and wrote the manuscript. T. Z. analyzed data and wrote the manuscript. Z. W. and Y. Z. analyzed data. G. Y. evaluated the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Hui Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Table S1

The VQs primers for quantitative real-time PCR. The primers are designed using Beacon Designer 8 software. (XLSX 9 kb)

Table S2

The chromosomal location, molecular weight, isoelectric point, and subcellular localization of VQs in Arachi duranensis, A. ipaensis, A. monticola, A. hypogaea cv. Fuhuasheng, A. hypogaea cv. Shitouqi, and A. hypogaea cv. Tifrunner. (XLSX 25 kb)

Table S3

The homologous VQs between Arabidopsis thaliana and Arachis hypogaea cv. Tifrunner. The homologous relation is constructed using the STRING web-server (V11.5). (XLSX 9 kb)

Table S4

The protein-protein interaction between VQ and WRKY in Arachis hypogaea cv. Tifrunner based on Arabidopsis sequences. (XLSX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wang, Z., Zhang, Y. et al. Dissection of valine-glutamine genes and their responses to drought stress in Arachis hypogaea cv. Tifrunner. Funct Integr Genomics 22, 491–501 (2022). https://doi.org/10.1007/s10142-022-00847-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-022-00847-7

Keywords

Navigation