Skip to main content
Log in

Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

De novo assembly of reads produced by next-generation sequencing (NGS) technologies offers a rapid approach to obtain expressed gene sequences for non-model organisms. Senna (Cassia angustifolia Vahl.) is a drought-tolerant annual undershrub of Caesalpiniaceae, a subfamily of Fabaceae. There are insufficient transcriptomic and genomic data in public databases for understanding the molecular mechanism underlying the drought tolerance of senna. Therefore, the main purpose of this study was to know the transcriptome profile of senna, with special reference to drought stress. RNA from two different stages of leaf development was extracted and sequenced separately using the Illumina technology. A total of 200 million reads were generated, and a de novo assembly of processed reads in the pooled transcriptome using Trinity yielded 43,413 transcripts which were further annotated using NCBI BLAST with “green plant database (txid 33090),” Swiss Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Gene Ontology (GO). Out of the total transcripts, 42,280 (95.0 %) were annotated by BLASTX against the green plant database of NCBI. Senna transcriptome showed the highest similarity to Glycine max (41 %), followed by Phaseolus vulgaris (16 %), Cicer arietinum (15 %), and Medicago trancatula (5 %). The highest number of GO terms were enriched for the molecular functions category; of these “catalytic activity” (GO: 0003824) (25.10 %) and “binding activity” (GO: 0005488) (20.10 %) were most abundantly represented. We used InterProscan to see protein similarity at domain level; a total of 33,256 transcripts were annotated against the Pfam domains. The transcripts were assigned with various KEGG pathways. Coding DNA sequences (CDS) encoding various drought stress-regulated pathways such as signaling factors, protein-modifying/degrading enzymes, biosynthesis of phytohormone, phytohormone signaling, osmotically active compounds, free radical scavengers, chlorophyll metabolism, leaf cuticular wax, polyamines, and protective proteins were identified through BLASTX search. The lucine-rich repeat kinase family was the most abundantly found group of protein kinases. Orphan, bHLH, and bZIP family TFs were the most abundantly found in senna. Six genes encoding MYC2 transcription factor, 9-cis-epoxycarotenoid dioxygenase (NCED), l -ascorbate peroxidase (APX), aminocyclopropane carboxylate oxidase (ACO), abscisic acid 8′-hydroxylase (ABA), and WRKY transcription factor were confirmed through reverse transcriptase-PCR (RT-PCR) and Sanger sequencing for the first time in senna. The potential drought stress-related transcripts identified in this study provide a good start for further investigation into the drought adaptation in senna. Additionally, our transcriptome sequences are the valuable resource for accelerated genomics-assisted genetic improvement programs and facilitate manipulation of biochemical pathways for developing drought-tolerant genotypes of crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9(10):1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abulafatih HA (1987) Medicinal plants of Southern Arabia. Econ Bot 41:354–360

    Article  Google Scholar 

  • Agarwal S, Pandey V (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plantarum 48(4):555–560

    Article  CAS  Google Scholar 

  • Akpinar BA, Avsar B, Lucas SJ, Budak H (2012) Plant abiotic stress signalling. Plant Signal Behav 7(11):1450–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akpinar BA, Lucas SJ, Budak H (2013) Genomics approaches for crop improvement against abiotic stress. Sci World J 15:361921

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Argueso CT, Hansen M, Kieber JJ (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26(2):92–105

    Article  CAS  Google Scholar 

  • Arraes FB, Beneventi MA, Lisei de Sa ME, Paixao JF, Albuquerque EV, Marin SR, Purgatto E, Nepomuceno AL, Grossi-de-Sa MF (2015) Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol 15:213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ayoub AT (1977) Some primary features of salt tolerance in senna (Cassia angastifolia). J Exp Bot 28:484–492

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Cr Rev Plant Sci 24(1):23–58

    Article  CAS  Google Scholar 

  • Beale SI (2005) Green genes gleaned. Trends Plant Sci 10(7):309–312

    Article  CAS  PubMed  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  CAS  PubMed  Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC Press, Inc., Boca Raton

    Google Scholar 

  • Boatwright JL, Pajerowska-Mukhtar K (2013) Salicylic acid: an old hormone up to new tricks. Mol Plant Pathol 14(6):623–634

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. In: Filipowicz W, Hohn T (eds) Post-transcriptional control of gene expression in plants. Springer, Dordrecht, pp 191–222

    Chapter  Google Scholar 

  • Bowman MJ, Park W, Bauer PJ, Udall JA, Page JT, Raney J, Scheffler BE, Jones DC, Campbell BT (2013) RNA-Seq transcriptome profiling of upland cotton (Gossypium hirsutum L.) root tissue under water-deficit stress. PLoS One 8(12):e82634

  • Budak H, Kantar M, Kurtoglu KY (2013) Drought tolerance in modern and wild wheat. Sci World J 15:548246

  • Ciftci-Yilmaz S, Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65(7–8):1150–1160

    Article  CAS  PubMed  Google Scholar 

  • Cutler AJ, Krochko JE (1999) Formation and breakdown of ABA. Trends Plant Sci 4(12):472–478

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8(10):813–824

    Article  PubMed  CAS  Google Scholar 

  • Daviere JM, Achard P (2013) Gibberellin signaling in plants. Development 140(6):1147–1151

    Article  CAS  PubMed  Google Scholar 

  • Devoto A, Ellis C, Magusin A, Chang HS, Chilcott C, Zhu T, Turner JG (2005) Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol 58(4):497–513

    Article  CAS  PubMed  Google Scholar 

  • do Amaral MN, Arge LW, Benitez LC, Danielowski R, Silveira SF, Farias DD, de Oliveira AC, da Maia LC, Braga EJ (2016) Comparative transcriptomics of rice plants under cold, iron, and salt stresses. Funct Integr Genom 16(5):567–579

  • Do PT, Degenkolbe T, Erban A, Heyer AG, Kopka J, Köhl KI, Hincha DK, Zuther E (2013) Dissecting rice polyamine metabolism under controlled long-term drought stress. PLoS One 8(4):e60325

  • Dong Y, Fan G, Deng M, Xu E, Zhao Z (2014) Genome-wide expression profiling of the transcriptomes of four Paulownia tomentosa accessions in response to drought. Genomics 104(4):295–305

    Article  CAS  PubMed  Google Scholar 

  • Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154(3):1304–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ergen NZ, Budak H (2009) Sequencing over 13 000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant Cell Environ 32(3):220–236

    Article  CAS  PubMed  Google Scholar 

  • Ergen NZ, Thimmapuram, Bohnert J, Hans J, Budak H (2009) Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct Integr Genomics 9(3):377–396

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280(6):547–563

    Article  CAS  PubMed  Google Scholar 

  • Folkard C (1995) Encyclopedia of herbs and their uses. Herb Society of America, Dorling Kindersley Publishing Inc., New York

    Google Scholar 

  • Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q (2011) OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol 76(1–2):145–156

    Article  CAS  PubMed  Google Scholar 

  • Gao JP, Wang D, Cao LY, Sun HF (2015) Transcriptome sequencing of Codonopsis pilosula and identification of candidate genes involved in polysaccharide biosynthesis. PLoS One 10(2):e0117342

  • Ghazanfar SA, Al-Sabahi AA (1993) Medicinal plants of northern and central Oman (Arabia). Econ Bot 41:89–98

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5(1):26–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammouda FM, Ismail SI, Abdel-Azim NS, Shams KA (2005) A guide to medicinal plants in North Africa. In: Batanouny KH (eds) IUCN Centre for Mediterranean Cooperation, Malaga, Andalusia, Spain, pp 217–218

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the postgenome era: past, present and future. Plant J 61(6):1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Hiz MC, Canher B, Niron H, Turet M (2014) Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS One 9(3):e92598

  • Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129(4):1568–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hortensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Sun X, Zhang X, Nevo E, Fu J (2014) An RNA sequencing transcriptome analysis of the high-temperature stressed tall fescue reveals novel insights into plant thermotolerance. BMC Genomics 15:1147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang SY, Bhalla R, Ramamoorthy R, Luan HF, Venkatesh PN, Cai M, Ramachandran S (2012) Over-expression of OSRIP18 increases drought and salt tolerance in transgenic rice plants. Transgenic Res 21(4):785–795

    Article  CAS  PubMed  Google Scholar 

  • Jin JP, Zhang H, Kong L, Gao G, Luo JC (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42(D1):1182–1187

    Article  CAS  Google Scholar 

  • Kantar M, Lucas SJ, Budak H (2011) Drought stress: molecular genetics and genomics approaches. Adv Bot Res 57:445–493

    Article  CAS  Google Scholar 

  • Kawano T, Furuichi T, Muso S (2004) Controlled free salicylic acid levels and corresponding signaling mechanisms in plants. Plant Biotechnol 21:319–335

    Article  CAS  Google Scholar 

  • Khalid H, Abdalla WE, Abdelgadir H, Opatz T, Effert T (2012) Gems from traditional north-African medicine: medicinal and aromatic plants from Sudan. Nat Prod Bioprospect 2(3):92–103

    Article  CAS  PubMed Central  Google Scholar 

  • Khammari I, Galavi M, Ghanbari A, Solouki M, Poorchaman MRA (2012) The effect of drought stress and nitrogen levels on antioxidant enzymes, proline and yield of Indian Senna (Cassia angustifolia L.). J Med Plants Res 6(11):2125–2130

    CAS  Google Scholar 

  • Khan NA, Nazar R, Iqbal N, Anjum NA (2012) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin

    Book  Google Scholar 

  • Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahoon R, Markham JE, Cahoon EB, Suh MC (2013) Arabidopsis 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol 162(2):567–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohli A, Sreenivasulu N, Lakshmanan P, Kuman PP (2013) The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep 32(7):945–957

    Article  CAS  PubMed  Google Scholar 

  • Krugman T, Chagué V, Peleg Z, Balzergue S, Just J, Korol AB, Nevo E, Saranga Y, Chalhoub B, Fahima T (2010) Multilevel regulation and signalling processes associated with adaptation to terminal drought in wild emmer wheat. Funct Integr Genomics 10(2):167–186

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Joshi R, Singh K, Roy S, Tripathi AK, Singh P, Singla-Pareek SL, Pareek A (2015) Expression of a cyclophilin OsCyp2-P isolated from a salt-tolerant landrace of rice in tobacco alleviates stress via ion homeostasis and limiting ROS accumulation. Funct Integr Genomics 15(4):395–412

    Article  CAS  PubMed  Google Scholar 

  • Kusaba M, Tanaka A, Tanaka R (2013) Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence. Photosynth Res 117(1–3):221–234

    Article  CAS  PubMed  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23(7):1647–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzuoglu-Ozturk D, Cebeci Yalcinkaya O, Akpinar BA, Mitou G, Korkmaz G, Gozuacik D, Budak H (2012) Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. Planta 236(4):1081–1092

    Article  CAS  PubMed  Google Scholar 

  • Lemli J (1986) The chemistry of senna. Fitoterapia 57:33–40

    CAS  Google Scholar 

  • Leng X, Mu Q, Wang X, Li X, Zhu X, Shangguan L, Fang J (2015) Transporters, chaperones, and P-type ATPases controlling grapevine copper homeostasis. Funct Integr Genomics 15(6):673–684

    Article  CAS  PubMed  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stress: chilling, freezing and high temperature stresses, vol 1, 2nd edn. Academic, New York

    Google Scholar 

  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post-transcriptionally to promote drought resistance. Plant Cell 20(8):2238–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MY, Tan HW, Wang F, Jiang Q, Xu ZS, Tian C, Xiong AS (2014) De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum). PLoS One 9(9):e108977

  • Li PS, Yu TF, He GH, Chen M, Zhou YB, Chai SC, Xu ZS, Ma YZ (2014) Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. BMC Genom 15:1009

  • Lim GH, Zhang X, Chung MS, Lee DJ, Woo YM, Cheong HS, Kim CS (2010) A putative novel transcription factor, AtSKIP, is involved in abscisic acid signalling and confers salt and osmotic tolerance in Arabidopsis. New Phytol 185(1):103–113

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Song T, Zhu Q, Wang W, Zhou J, Liao H (2014) De novo assembly and analysis of Cassia obtusifolia seed transcriptome to identify genes involved in the biosynthesis of active metabolites. Biosci Biotechnol Biochem 78(5):791–799

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Che Z, Zeng X, Zhou X, Sitoe HM, Wang H, Yu D (2016) Genome-wide analysis of calcium-dependent protein kinases and their expression patterns in response to herbivore and wounding stresses in soybean. Funct Integr Genom 16(5):481–493

  • Long L, Gao W, Xu L, Liu M, Luo X, He X, Yang X, Zhang X, Zhu L (2014) GbMPK3, a mitogen-activated protein kinase from cotton, enhances drought and oxidative stress tolerance in tobacco. Plant Cell Tiss Organ Cult 116:153–162

    Article  CAS  Google Scholar 

  • Lucas S, Dogan E, Budak H (2011a) TMPIT1 from wild emmer wheat: first characterisation of a stress-inducible integral membrane protein. Gene 483(1):22–28

    Article  CAS  PubMed  Google Scholar 

  • Lucas S, Durmaz E, Akpınar BA, Budak H (2011b) The drought response displayed by a DRE-binding protein from Tritium dicoccoides. Plant Physiol Biochem 49(3):346–351

    Article  CAS  PubMed  Google Scholar 

  • Manavalan LP, Chen X, Clarke J, Salmeron J, Nguyen HT (2012) RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice. J Exp Bot 63(1):163–175

    Article  CAS  PubMed  Google Scholar 

  • Min XJ, Butler G, Storms R, Tsang A (2005) OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res. Web Server Issue W677–W680. (http://bioinformatics.ysu.edu/tools/OrfPredictor.html)

  • Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80

    Article  CAS  PubMed  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa A, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185

    Article  PubMed  PubMed Central  Google Scholar 

  • Munné-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161(1):5–19

    Article  PubMed  CAS  Google Scholar 

  • Mustafa NR, Kim HK, Choi YH, Erkelens C, Lefeber AW, Spijksma G, van der Heijden R, Verpoorte R (2009) Biosynthesis of salicylic acid in fungus elicited Catharanthus roseus cells. Phytochemistry 70(4):532–539

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):97–103

    Article  CAS  PubMed  Google Scholar 

  • Ning Y, Jantasuriyarat C, Zhao Q, Zhang H, Chen S, Liu J, Liu L, Tang S, Park CH, Wang X, Liu X, Dai L, Xie Q, Wang GL (2011) The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol 157(1):242–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey N, Ranjan A, Pant P, Tripathi RK, Ateek F, Pandey HP, Patre UV, Sawant SV (2013) CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics 14:216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park GG, Park JJ, Yoon J, Yu SN, An G (2010) A RING finger E3 ligase gene, Oryza sativa delayed seed germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol Biol 74(4–5):467–478

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    Article  CAS  PubMed  Google Scholar 

  • Qureshi MI, Abdin MZ, Qadir S, Iqbal M (2007) Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl. Biol Plantarum 51(1):121–128

    Article  CAS  Google Scholar 

  • Rama Reddy NR, Ragimasalawada M, Sabbavarapu MM, Nadoor S, Patil JV (2014) Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35. BMC Genom 18(15):909

  • Rama Reddy NR, Mehta RH, Soni PH, Makasana J, Gajbhiye NA, Ponnuchamy M, Kumar J (2015) Next generation sequencing and transcriptome analysis predicts biosynthetic pathway of sennosides from senna (Cassia angustifolia Vahl.), a non-model plant with potent laxative properties. PLoS One 10(6):e0129422

  • Ramchandra Reddy A, Chaitanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–1202

    Article  CAS  Google Scholar 

  • Raney JA, Reynolds DJ, Elzinga DB, Page J, Udall JA, Jellen EN, Bonfacio A, Fairbanks DJ, Maughan PJ (2014) Transcriptome analysis of drought induced stress in Chenopodium quinoa. Am J Plant Sci 5(3):338–357

    Article  CAS  Google Scholar 

  • Ratnayaka HH, Kincaid D (2005) Gas exchange and leaf ultrastructure of tinnevelly senna, cassia angustifolia, under drought and nitrogen stress. Crop Sci 45(3):840–847

    Article  CAS  Google Scholar 

  • Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu J, Gong Z (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63(3):417–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards DE, King KE, Ait-Ali T, Harberd NP (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellins signaling. Annu Rev Plant Physiol Plant Mol Biol 52:67–88

    Article  CAS  PubMed  Google Scholar 

  • Rocheta M, Becker JD, Coito JL, Carvalho L, Amâncio S (2014) Heat and water stress induce unique transcriptional signatures of heat-shock proteins and transcription factors in grapevine. Funct Integr Genomics 14(1):135–148

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  CAS  PubMed  Google Scholar 

  • Roje S (2006) S-adenosyl-L-methionine: beyond the universal methyl group donor. Phytochemistry 67(15):1686–1698

    Article  CAS  PubMed  Google Scholar 

  • Ryu MY, Cho SK, Kim WT (2010) The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress. Plant Physiol 154(4):1983–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134(4):1439–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santner A, Calderon-Villalobos LI, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5(5):301–307

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10(3):296–302

    Article  CAS  PubMed  Google Scholar 

  • Shakeel SN, Wang X, Binder BM, Schaller GE (2013) Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB Plants 5:plt010

  • Shang J, Song P, Ma B, Qi X, Zeng Q, Xiang Z, He N (2014) Identification of the mulberry genes involved in ethylene biosynthesis and signaling pathways and the expression of MaERF-B2-1 and MaERF-B2-2 in the response to flooding stress. Funct Integr Genomics 14(4):767–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanker AK, Maheswari M, Yadav SK, Desai S, Bhanu D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Funct Integr Genomics 14(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Villamor JG, Verslues PE (2011) Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol 157(1):292–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Wang X, Ye T, Chen F, Deng J, Yang P, Zhang Y, Chan Z (2014) The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and C-REPEAT-BINDING FACTOR Genes in Arabidopsis. Plant Physiol 165(3):1367–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Kumar R, Mahato AK, Paliwal R, Singh AK, Kumar S, Marla SS, Kumar A, Singh NK (2016) De novo transcriptome sequencing facilitates genomic resource generation in Tinospora cordifolia. Funct Integr Genomics 16(5):581–591

  • Song A, Zhu X, Chen F, Gao H, Jiang J, Chen S (2014) A chrysanthemum heat shock protein confers tolerance to abiotic stress. Int J Mol Sci 15(3):5063–5078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song L, Jiang L, Chen Y, Shu Y, Bai Y, Guo C (2016) Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress. Funct Integr Genom 16(5):495–511

  • Sreedhar RV, Kumari P, Rupwate SD, Rajasekharan R, Srinivasan M (2015) Exploring triacylglycerol biosynthetic pathway in developing seeds of Chia (Salvia hispanica L.): a transcriptomic approach. PLoS One 10(4):e0123580

  • Su LT, Li JW, Liu DQ, Zhai Y, Zhang HJ, Li XW, Zhang QL, Wang Y, Wang QY (2014) A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana. Gene 538(1):46–55

  • Sun R, Wang K, Guo T, Jones DC, Cobb J, Zhang B, Wang Q (2015a) Genome-wide identification of auxin response factor (ARF) genes and its tissue-specific prominent expression in Gossypium raimondii. Funct Integr Genomics 15(4):481–493

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Chen H, Wang J, Sun HW, Yang SK, Sang YL, Lu XB, Xu XH (2015b) Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a keylink between abiotic stress signaling and plant reproduction. Funct Integr Genomics 15(1):107–120

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Xie Z, Zhang C, Mu Q, Wu W, Wang B, Fang J (2016) A characterization of grapevine of GRAS domain transcription factor gene family. Funct Integr Genomics 16(4):347–363

    Article  CAS  PubMed  Google Scholar 

  • Swamy PM, Smith BN (1999) Role of abscisic acid in plant stress tolerance. Curr Sci 76:1220–1227

    CAS  Google Scholar 

  • Thomas H, Ougham H (2014) The stay-green trait. J Exp Bot 65(14):3889–3900

    Article  CAS  PubMed  Google Scholar 

  • Thumma BR, Sharma N, Southerton SG (2012) Transcriptome sequencing of Eucalyptus camaldulensis seedlings subjected to water stress reveals functional single nucleotide polymorphisms and genes under selection. BMC Genomics 13:364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2007) Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49(1):46–63

    Article  CAS  PubMed  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14(Suppl):S153–S164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17(2):113–122

    Article  CAS  PubMed  Google Scholar 

  • Van Eck L, Davidson RM, Wu S, Zhao BY, Botha AM, Leach JE, Lapitan NL (2014) The transcriptional network of WRKY53 in cereals links oxidative responses to biotic and abiotic stress inputs. Funct Integr Genomics 14(2):351–362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venkatesh J, Park SW (2014) Role of L-ascorbate in alleviating abiotic stresses in crop plants. Botan Stud 55:38

    Article  CAS  Google Scholar 

  • Wang S, Bai Y, Shen C, Wu Y, Zhang S, Jiang D, Guilfoyle TJ, Chen M, Qi Y (2010) Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct Integr Genomics 10(4):533–546

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Jia C, Li J, Huang S, Xu B, Jin Z (2015) Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish). Funct Integr Genomics 15(1):47–62

    Article  CAS  PubMed  Google Scholar 

  • Wang YN, Tang L, Hou Y, Wang P, Yang H, Wei CL (2016) Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq. Funct Integr Genomics 16(4):383–398

  • Wei S, Hu W, Deng X, Zhang Y, Liu X, Zhao X, Luo Q, Jin Z, Li Y, Zhou S, Sun T, Wang L, Yang G, He G (2014) A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol 14:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G, Zhang L, Yin Y, Wu J, Yu L, Zhou Y, Li M (2015) Sequencing, de novo assembly and comparative analysis of Raphanus sativus transcriptome. Front Plant Sci 6:198

  • Wu ZJ, Li XH, Liu ZW, Li H, Wang YX, Zhuang J (2016) Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis). Funct Integr Genomics 15(6):741–752

    Article  CAS  Google Scholar 

  • Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9(3):e92913

  • Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B (2013) Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genomics 14:662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu A, Zhang W, Wen CK (2014a) Enhancing ctr1-10 ethylene response2 is a novel allele involved in constitutive triple-response 1-mediated ethylene receptor signaling in Arabidopsis. BMC Plant Biol 14:48

  • Xu DB, Gao SQ, Ma YZ, Xu ZS, Zhao CP, Tang YM, Xy L, Li LC, Chen YF, Chen M (2014b) ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants. Funct Integr Genomics 14(4):717–730

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular response and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Kong Z, Omo-Ikerodah E, Xu W, Li Q, Xue Y (2008) Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J Genet Genomics 35(9):531–543, S1-2

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Mao Z, Chong K (2013) A global profiling of uncapped mRNAs under cold stress reveals specific decay patterns and endonucleolytic cleavages in Brachypodium distachyon. Genome Biol 14(8):R92

  • Zhang F, Yao J, Ke J, Zhang L, Lam VQ, Xin XF, Zhou XE, Chen J, Brunzelle J, Griffin PR, Zhou M, Xu HE, Melcher K, He SY (2015a) Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525(7568):269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Hu W, Wang Y, Feng R, Zhang Y, Liu J, Jia C, Miao H, Zhang J, Xu B, Jin Z (2015b) The MaASR gene as a crucial component in multiple drought stress response pathways in Arabidopsis. Funct Integr Genomics 15(2):247–260

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Allan AC, Li C, Wang Y, Yao Q (2015c) De novo assembly and characterization of the transcriptome of the Chinese medicinal herb, Gentiana rigescens. Int J Mol Sci 16(5):11550–11573

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Gao Y, Zhang Z, Chen T, Guo W, Zhang T (2013) A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis. BMC Plant Biol 13:110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong L, Chen D, Min D, Li W, Xu Z, Zhou Y, Li L, Chen M, Ma Y (2015) AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana. Biochem Biophys Res Commun 457(3):433–439

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Gao F, Liu R, Feng J, Li H (2012) De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus. BMC Genomics 13:266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Li L, Xiang J, Gao G, Xu F, Liu A, Zhang X, Peng Y, Chen X, Wan X (2015) OsGL1-3 is involved in cuticular wax biosynthesis and tolerance to water deficit in rice. PLoS One 10(1):e116676

  • Zhu H, Dardick CD, Beers EP, Callanhan AM, Xia R, Yuan R (2011) Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. BMC Plant Biol 11:138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Department of Science and Technology (DST), Government of India (GOI), for supporting this work under the Fast Track Scheme for Young Scientist under grant number SB/FT/LS-329/2012 and the project entitled “Transcriptome analysis of senna (Cassia angustifolia Vahl.) to identify potential genes involved in the biosynthesis of sennosides” and the Director, ICAR-Directorate of Medicinal and Aromatic Plants Research, Boriavi, Anand, Gujarat, India, and Indian Council of Agricultural research (ICAR), New Delhi, India for the facilities to undertake the study.

Authors’ contributions

Conceived and designed the experiments: NRRR. Performed the experiments: NRRR RHM. Analyzed the data: NRRR MP JK. Contributed reagents/materials/analysis tools: NRRR MP JK. Wrote the paper: RHM NRRR MP JK

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaraja Reddy Rama Reddy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Availability of supporting data

The datasets supporting the results of this article are available at the National Center for Biotechnology Information (NCBI) BioProject database (Short Read Archive) under accession number PRJNA273534 and the Transcriptome Shotgun Assembly (TSA) at DDBJ/EMBL/GenBank under the accession GEEB00000000. The version described in this paper is the first version, GEEB01000000.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Transcript size (bp) distribution (DOC 61 kb)

Figure S2

Size distribution of CDS (DOC 67 kb)

Figure S3

Sequence alignment to show conformity between transcriptome assembly (trans) and Sanger sequencing (seq) of the in vitro amplified PCR product of drought stress regulated genes in senna (DOCX 30 kb)

Table S1

KEGG categories of CDS in the transcriptome of leaf of C. angustifolia (PDF 3957 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, R.H., Ponnuchamy, M., Kumar, J. et al. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach. Funct Integr Genomics 17, 1–25 (2017). https://doi.org/10.1007/s10142-016-0523-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-016-0523-y

Keywords

Navigation