Skip to main content

Advertisement

Log in

A signature of six genes highlights defects on cell growth and specific metabolic pathways in murine and human hepatocellular carcinoma

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) represents a major health problem as it afflicts an increasing number of patients worldwide. Albeit most of the risk factors for HCC are known, this is a deadly syndrome with a life expectancy at the time of diagnosis of less than 1 year. Definition of the molecular principles governing the neoplastic transformation of the liver is an urgent need to facilitate the clinical management of patients, based on innovative methods to detect the disease in its early stages and on more efficient therapies. In the present study, we have combined the analysis of a murine model and human samples of HCC to identify genes differentially expressed early in the process of hepatocarcinogenesis, using a microarray-based approach. Expression of 190 genes was impaired in murine HCC from which 65 were further validated by low-density array real-time polymerase chain reaction (RT-PCR). The expression of the best 45 genes was then investigated in human samples resulting in 18 genes in which expression was significantly modified in HCC. Among them, JUN, methionine adenosyltransferase 1A and 2A, phosphoglucomutase 1, and acyl CoA dehydrogenase short/branched chain indicate defective cell proliferation as well as one carbon pathway, glucose and fatty acid metabolism, both in HCC and cirrhotic liver, a well-known preneoplastic condition. These alterations were further confirmed in public transcriptomic datasets from other authors. In addition, vasodilator-stimulated phosphoprotein, an actin-associated protein involved in cytoskeleton remodeling, was also found to be increased in the liver and serum of cirrhotic and HCC patients. In addition to revealing the impairment of central metabolic pathways for liver homeostasis, further studies may probe the potential value of the reported genes for the early detection of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SAM:

S-Adenosylmethionine

MAT1A:

Methionine adenosyltransferase 1A

MAT2A:

Methionine adenosyltransferase 2A

PGM1:

Phosphoglucomutase 1

ACADSB:

Acyl CoA dehydrogenase short/branched chain

ApoA1:

Apolipoprotein A1

C6:

Complement component 6

ALB:

Albumin

CD14:

Monocyte differentiation antigen CD14

PRDX6:

Peroxiredoxin 6

EDNRB:

Endothelin receptor type B

CA3:

Carbonic anhydrase 3

OAT:

Ornithine aminotransferase

SORD:

Sorbitol dehydrogenase

ACAT2:

Acetyl-Coenzyme A acetyltransferase 2

PAH:

Phenylalanine hydroxylase

CBS:

Cystathionine beta-synthase

VASP:

Vasodilator-stimulated phosphoprotein

References

  • Avila MA, Berasain C, Torres L, Martin-Duce A, Corrales FJ, Yang H, Prieto J, Lu SC, Caballeria J, Rodes J, Mato JM (2000) Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J Hepatol 33:907–914

    Article  PubMed  CAS  Google Scholar 

  • Balinsky D, Cayanis E, Geddes EW, Bersohn I (1973) Activities and isoenzyme patterns of some enzymes of glucose metabolism in human primary malignant hepatoma. Cancer Res 33:249–255

    PubMed  CAS  Google Scholar 

  • Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218. doi:10.1172/JCI24282

    PubMed  CAS  Google Scholar 

  • Berasain C, Castillo J, Prieto J, Avila MA (2007) New molecular targets for hepatocellular carcinoma: the ErbB1 signaling system. Liver Int 27:174–185. doi:10.1111/j.1478-3231.2006.01424.x

    Article  PubMed  CAS  Google Scholar 

  • Berasain C, Castillo J, Perugorria MJ, Latasa MU, Prieto J, Avila MA (2009) Inflammation and liver cancer: new molecular links. Ann NY Acad Sci 1155:206–221. doi:10.1111/j.1749-6632.2009.03704.x

    Article  PubMed  CAS  Google Scholar 

  • Bosch FX, Ribes J, Borras J (1999) Epidemiology of primary liver cancer. Semin Liver Dis 19:271–285

    Article  PubMed  CAS  Google Scholar 

  • Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, Kammula US, Chen Y, Qin LX, Tang ZY, Wang XW (2006) Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 10:99–111. doi:10.1016/j.ccr.2006.06.016

    Article  PubMed  CAS  Google Scholar 

  • Bundschu K, Walter U, Schuh K (2006) The VASP-Spred-Sprouty domain puzzle. J Biol Chem 281:36477–36481. doi:10.1074/jbc.R600023200

    Article  PubMed  CAS  Google Scholar 

  • Cadoret A, Ovejero C, Terris B, Souil E, Levy L, Lamers WH, Kitajewski J, Kahn A, Perret C (2002) New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene 21:8293–8301. doi:10.1038/sj.onc.1206118

    Article  PubMed  CAS  Google Scholar 

  • Chiang DY, Villanueva A, Hoshida Y, Peix J, Newell P, Minguez B, LeBlanc AC, Donovan DJ, Thung SN, Sole M, Tovar V, Alsinet C, Ramos AH, Barretina J, Roayaie S, Schwartz M, Waxman S, Bruix J, Mazzaferro V, Ligon AH, Najfeld V, Friedman SL, Sellers WR, Meyerson M, Llovet JM (2008) Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res 68:6779–6788. doi:10.1158/0008-5472.CAN-08-0742

    Article  PubMed  CAS  Google Scholar 

  • Dai HY, Hong CC, Liang SC, Yan MD, Lai GM, Cheng AL, Chuang SE (2008) Carbonic anhydrase III promotes transformation and invasion capability in hepatoma cells through FAK signaling pathway. Mol Carcinog 47:956–963. doi:10.1002/mc.20448

    Article  PubMed  CAS  Google Scholar 

  • Donato MF, Arosio E, Del Ninno E, Ronchi G, Lampertico P, Morabito A, Balestrieri MR, Colombo M (2001) High rates of hepatocellular carcinoma in cirrhotic patients with high liver cell proliferative activity. Hepatology 34:523–528. doi:10.1053/jhep.2001.26820

    Article  PubMed  CAS  Google Scholar 

  • Duce AM, Ortiz P, Cabrero C, Mato JM (1988) S-adenosyl-L-methionine synthetase and phospholipid methyltransferase are inhibited in human cirrhosis. Hepatology 8:65–68

    Article  PubMed  CAS  Google Scholar 

  • Eismann T, Huber N, Shin T, Kuboki S, Galloway E, Wyder M, Edwards MJ, Greis KD, Shertzer HG, Fisher AB, Lentsch AB (2009) Peroxiredoxin-6 protects against mitochondrial dysfunction and liver injury during ischemia-reperfusion in mice. Am J Physiol Gastrointest Liver Physiol 296:G266–G274. doi:10.1152/ajpgi.90583.2008

    Article  PubMed  CAS  Google Scholar 

  • El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132:2557–2576

    Article  PubMed  CAS  Google Scholar 

  • Elsharkawy AM, Mann DA (2007) Nuclear factor-kappaB and the hepatic inflammation-fibrosis-cancer axis. Hepatology 46:590–597. doi:10.1002/hep.21802

    Article  PubMed  CAS  Google Scholar 

  • Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6:674–687

    Article  PubMed  CAS  Google Scholar 

  • Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S (2005) Bioinformatics and computational biology solutions using R and Bioconductor. Springer, New York

    Book  Google Scholar 

  • Hennenberg M, Trebicka J, Fischer HP, Heller J, Sauerbruch T (2009) Hepatic VASP upregulation in rats with secondary biliary cirrhosis by expression in the peribiliary vascular plexus. Microvasc Res 78:235–240. doi:10.1016/j.mvr.2009.05.002

    Article  PubMed  CAS  Google Scholar 

  • Iizuka N, Oka M, Yamada-Okabe H, Nishida M, Maeda Y, Mori N, Takao T, Tamesa T, Tangoku A, Tabuchi H, Hamada K, Nakayama H, Ishitsuka H, Miyamoto T, Hirabayashi A, Uchimura S, Hamamoto Y (2003) Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet 361:923–929. doi:10.1016/S0140-6736(03)12775-4

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    Article  PubMed  Google Scholar 

  • Kang N, Yaqoob U, Geng Z, Bloch K, Liu C, Gomez T, Billadeau D, Shah V (2010) Focal adhesion assembly in myofibroblasts fosters a microenvironment that promotes tumor growth. Am J Pathol 177:1888–1900. doi:10.2353/ajpath.2010.100187

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowski AV, Gertler FB, Loureiro JJ (2003) Function and regulation of Ena/VASP proteins. Trends Cell Biol 13:386–392

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Chu IS, Heo J, Calvisi DF, Sun Z, Roskams T, Durnez A, Demetris AJ, Thorgeirsson SS (2004) Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 40:667–676. doi:10.1002/hep.20375

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, Mikaelyan A, Roberts LR, Demetris AJ, Sun Z, Nevens F, Roskams T, Thorgeirsson SS (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12:410–416. doi:10.1038/nm1377

    Article  PubMed  CAS  Google Scholar 

  • Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917. doi:10.1016/S0140-6736(03)14964-1

    Article  PubMed  Google Scholar 

  • Llovet JM, Chen Y, Wurmbach E, Roayaie S, Fiel MI, Schwartz M, Thung SN, Khitrov G, Zhang W, Villanueva A, Battiston C, Mazzaferro V, Bruix J, Waxman S, Friedman SL (2006) A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology 131:1758–1767. doi:10.1053/j.gastro.2006.09.014

    Article  PubMed  CAS  Google Scholar 

  • Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390. doi:10.1056/NEJMoa0708857

    Article  PubMed  CAS  Google Scholar 

  • Lotersztajn S, Julien B, Teixeira-Clerc F, Grenard P, Mallat A (2005) Hepatic fibrosis: molecular mechanisms and drug targets. Annu Rev Pharmacol Toxicol 45:605–628. doi:10.1146/annurev.pharmtox.45.120403.095906

    Article  PubMed  CAS  Google Scholar 

  • Lu SC, Mato JM (2008) S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J Gastroenterol Hepatol 23(Suppl 1):S73–S77. doi:10.1111/j.1440-1746.2007.05289.x

    Article  PubMed  CAS  Google Scholar 

  • Lu SC, Alvarez L, Huang ZZ, Chen L, An W, Corrales FJ, Avila MA, Kanel G, Mato JM (2001) Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc Natl Acad Sci USA 98:5560–5565

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Chantar ML, Vazquez-Chantada M, Ariz U, Martinez N, Varela M, Luka Z, Capdevila A, Rodriguez J, Aransay AM, Matthiesen R, Yang H, Calvisi DF, Esteller M, Fraga M, Lu SC, Wagner C, Mato JM (2008) Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology 47:1191–1199. doi:10.1002/hep.22159

    Article  PubMed  CAS  Google Scholar 

  • Mato JM, Corrales FJ, Lu SC, Avila MA (2002) S-Adenosylmethionine: a control switch that regulates liver function. FASEB J 16:15–26

    Article  PubMed  CAS  Google Scholar 

  • Midorikawa Y, Tsutsumi S, Nishimura K, Kamimura N, Kano M, Sakamoto H, Makuuchi M, Aburatani H (2004) Distinct chromosomal bias of gene expression signatures in the progression of hepatocellular carcinoma. Cancer Res 64:7263–7270. doi:10.1158/0008-5472.CAN-04-1275

    Article  PubMed  CAS  Google Scholar 

  • Nakashima C, Yamaguchi M (2006) Overexpression of regucalcin enhances glucose utilization and lipid production in cloned rat hepatoma H4-II-E cells: involvement of insulin resistance. J Cell Biochem 99:1582–1592. doi:10.1002/jcb.21005

    Article  PubMed  CAS  Google Scholar 

  • Nam SW, Park JY, Ramasamy A, Shevade S, Islam A, Long PM, Park CK, Park SE, Kim SY, Lee SH, Park WS, Yoo NJ, Liu ET, Miller LD, Lee JY (2005) Molecular changes from dysplastic nodule to hepatocellular carcinoma through gene expression profiling. Hepatology 42:809–818. doi:10.1002/hep.20878

    Article  PubMed  CAS  Google Scholar 

  • Nejak-Bowen KN, Zeng G, Tan X, Cieply B, Monga SP (2009) Beta-catenin regulates vitamin C biosynthesis and cell survival in murine liver. J Biol Chem 284:28115–28127. doi:10.1074/jbc.M109.047258

    Article  PubMed  CAS  Google Scholar 

  • Neuhofer W, Gulberg V, Gerbes AL (2006) Endothelin and endothelin receptor antagonism in portopulmonary hypertension. Eur J Clin Investig 36(Suppl 3):54–61. doi:10.1111/j.1365-2362.2006.01690.x

    Article  CAS  Google Scholar 

  • Newell P, Toffanin S, Villanueva A, Chiang DY, Minguez B, Cabellos L, Savic R, Hoshida Y, Lim KH, Melgar-Lesmes P, Yea S, Peix J, Deniz K, Fiel MI, Thung S, Alsinet C, Tovar V, Mazzaferro V, Bruix J, Roayaie S, Schwartz M, Friedman SL, Llovet JM (2009) Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo. J Hepatol 51:725–733. doi:10.1016/j.jhep.2009.03.028

    Article  PubMed  CAS  Google Scholar 

  • Paradis V, Bieche I, Dargere D, Laurendeau I, Laurent C, Bioulac Sage P, Degott C, Belghiti J, Vidaud M, Bedossa P (2003) Molecular profiling of hepatocellular carcinomas (HCC) using a large-scale real-time RT-PCR approach: determination of a molecular diagnostic index. Am J Pathol 163:733–741

    Article  PubMed  CAS  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  • Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466. doi:10.1038/nature02924nature02924

    Article  PubMed  CAS  Google Scholar 

  • Rubio A, Guruceaga E, Vazquez-Chantada M, Sandoval J, Martinez-Cruz LA, Segura V, Sevilla JL, Podhorski A, Corrales FJ, Torres L, Rodriguez M, Aillet F, Ariz U, Arrieta FM, Caballeria J, Martin-Duce A, Lu SC, Martinez-Chantar ML, Mato JM (2007) Identification of a gene-pathway associated with non-alcoholic steatohepatitis. J Hepatol 46:708–718. doi:10.1016/j.jhep.2006.10.021

    Article  PubMed  CAS  Google Scholar 

  • Salvi A, Arici B, Portolani N, Giulini SM, De Petro G, Barlati S (2007) In vitro c-met inhibition by antisense RNA and plasmid-based RNAi down-modulates migration and invasion of hepatocellular carcinoma cells. Int J Oncol 31:451–460

    PubMed  CAS  Google Scholar 

  • Santamaria E, Avila MA, Latasa MU, Rubio A, Martin-Duce A, Lu SC, Mato JM, Corrales FJ (2003) Functional proteomics of nonalcoholic steatohepatitis: mitochondrial proteins as targets of S-adenosylmethionine. Proc Natl Acad Sci USA 100:3065–3070

    Article  PubMed  CAS  Google Scholar 

  • Santamaria E, Munoz J, Fernandez-Irigoyen J, Sesma L, Mora MI, Berasain C, Lu SC, Mato JM, Prieto J, Avila MA, Corrales FJ (2006) Molecular profiling of hepatocellular carcinoma in mice with a chronic deficiency of hepatic s-adenosylmethionine: relevance in human liver diseases. J Proteome Res 5:944–953. doi:10.1021/pr050429v

    Article  PubMed  CAS  Google Scholar 

  • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3(1). doi:10.2202/1544-6115.1027. (Article3)

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. doi:10.1073/pnas.0506580102

    Article  PubMed  CAS  Google Scholar 

  • Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 99:6567–6572. doi:10.1073/pnas.08209929999/10/6567

    Article  PubMed  CAS  Google Scholar 

  • Torres L, Avila MA, Carretero MV, Latasa MU, Caballeria J, Lopez-Rodas G, Boukaba A, Lu SC, Franco L, Mato JM (2000) Liver-specific methionine adenosyltransferase MAT1A gene expression is associated with a specific pattern of promoter methylation and histone acetylation: implications for MAT1A silencing during transformation. FASEB J 14:95–102

    PubMed  CAS  Google Scholar 

  • Tovar V, Alsinet C, Villanueva A, Hoshida Y, Chiang DY, Sole M, Thung S, Moyano S, Toffanin S, Minguez B, Cabellos L, Peix J, Schwartz M, Mazzaferro V, Bruix J, Llovet JM (2010) IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J Hepatol 52:550–559. doi:10.1016/j.jhep.2010.01.015

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  PubMed  Google Scholar 

  • Villanueva A, Minguez B, Forner A, Reig M, Llovet JM (2010) Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy. Annu Rev Med 61:317–328. doi:10.1146/annurev.med.080608.100623

    Article  PubMed  CAS  Google Scholar 

  • Wang XW, Thorgeirsson SS (2009) Genome-based predictors for HCC outcomes: a matter of tumor and/or stroma. J Hepatol 51:596–597. doi:10.1016/j.jhep.2009.05.007

    Article  PubMed  Google Scholar 

  • Weber G, Morris HP (1963) Comparative biochemistry of hepatomas. III. Carbohydrate enzymes in liver tumors of different growth rates. Cancer Res 23:987–994

    PubMed  CAS  Google Scholar 

  • Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Schwartz M, Fiel I, Thung S, Mazzaferro V, Bruix J, Bottinger E, Friedman S, Waxman S, Llovet JM (2007) Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology 45:938–947. doi:10.1002/hep.21622

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M (2005) Role of regucalcin in maintaining cell homeostasis and function (review). Int J Mol Med 15:371–389

    PubMed  CAS  Google Scholar 

  • Zender L, Villanueva A, Tovar V, Sia D, Chiang DY, Llovet JM (2010) Cancer gene discovery in hepatocellular carcinoma. J Hepatol 52:921–929. doi:10.1016/j.jhep.2009.12.034

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann HW, Seidler S, Nattermann J, Gassler N, Hellerbrand C, Zernecke A, Tischendorf JJ, Luedde T, Weiskirchen R, Trautwein C, Tacke F (2010) Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS One 5:e11049. doi:10.1371/journal.pone.0011049

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The technical assistance of Lourdes Ortiz, Virginia Villar, and María I. Mora is acknowledged. This work was supported by the agreement between FIMA and the “UTE project CIMA”; grants Plan Nacional I+D+I SAF2008-0154 from Ministerio de Ciencia e Innovación to FJC; ISCIII-RETIC RD06/0020 to FJC. PS was founded by the ISCIII.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando J. Corrales.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1089 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, P.C., Segura, V., Riezu, J.I. et al. A signature of six genes highlights defects on cell growth and specific metabolic pathways in murine and human hepatocellular carcinoma. Funct Integr Genomics 11, 419–429 (2011). https://doi.org/10.1007/s10142-011-0230-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-011-0230-7

Keywords

Navigation