Skip to main content
Log in

Staying alive in adversity: transcriptome dynamics in the stress-resistant dauer larva

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

In response to food depletion and overcrowding, the soil nematode Caenorhabditis elegans can arrest development and form an alternate third larval stage called the dauer. Though nonfeeding, the dauer larva is long lived and stress resistant. Metabolic and transcription rates are lowered but the transcriptome of the dauer is complex. In this study, distribution analysis of transcript profiles generated by Serial Analysis of Gene Expression (SAGE) in dauer larvae and in mixed developmental stages is presented. An inverse relationship was observed between frequency and abundance/copy number of SAGE tag types (transcripts) in both profiles. In the dauer profile, a relatively greater proportion of highly abundant transcripts was counterbalanced by a smaller fraction of low to moderately abundant transcripts. Comparisons of abundant tag counts between the two profiles revealed relative enrichment in the dauer profile of transcripts with predicted or known involvement in ribosome biogenesis and protein synthesis, membrane transport, and immune responses. Translation-coupled mRNA decay is proposed as part of an immune-like stress response in the dauer larva. An influence of genomic region on transcript level may reflect the coordination of transcription and mRNA turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anderson GL (1978) Responses of dauer larvae of Caenorhabditis elegans (Nematoda: Rhabditidae) to thermal stress and oxygen deprivation. Can J Zool 56:1786–1791

    Google Scholar 

  • Anderson GL (1982) Superoxide dismutase activity in dauer larvae of Caenorhabditis elegans (Nematoda: Rhabditidae). Can J Zool 60:288–291

    Article  CAS  Google Scholar 

  • Arunachalam B, Phan UT, Geuze HJ, Cresswell P (2000) Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT). Proc Natl Acad Sci USA 97:745–750

    Article  PubMed  CAS  Google Scholar 

  • Avni D, Shama S, Loreni F, Meyuhas O (1994) Vertebrate mRNAs with a 5′-terminal pyrimidine tract are candidates for translational repression in quiescent cells: characterization of the translational cis-regulatory element. Mol Cell Biol 14:3822–3833

    PubMed  CAS  Google Scholar 

  • Baugh LR, Hill AA, Slonim DK, Brown EL, Hunter CP (2003) Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome. Development 130:889–900

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bheekha-Escura R, MacGlashan DW Jr, Langdon JM, MacDonald SM (2000) Human recombinant histamine-releasing factor activates human eosinophils and the eosinophilic cell line, AML14-3D10. Blood 96:2191–2198

    PubMed  CAS  Google Scholar 

  • Birkenkamp KU, Coffer PJ (2003) FOXO transcription factors as regulators of immune homeostasis: molecules to die for? J Immunol 171:1623–1629

    PubMed  CAS  Google Scholar 

  • Bloss TA, Witze ES, Rothman JH (2003) Suppression of CED-3-independent apoptosis by mitochondrial βNAC in Caenorhabditis elegans. Nature 424:1066–1071

    Article  PubMed  CAS  Google Scholar 

  • Böhm H, Benndorf R, Gaestel M, Burckhard G, Nürnberg P, Kraft R, Otto A, Bielka H (1989) The growth-related protein p23 of the Ehrlich ascites tumor: translational control, cloning and primary structure. Biochem Int 19:277–286

    PubMed  Google Scholar 

  • Cassada RC, Russell RL (1975) The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol 46:326–342

    Article  PubMed  CAS  Google Scholar 

  • Chambeyron S, Bickmore WA (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18:1119–1130

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • Dalley BK, Golomb M (1992) Gene expression in the Caenorhabditis elegans dauer larva: developmental regulation of Hsp90 and other genes. Dev Biol 151:80–90

    Article  PubMed  CAS  Google Scholar 

  • Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    Article  PubMed  CAS  Google Scholar 

  • Finley D, Bartel B, Varshavsky A (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338:394–401

    Article  PubMed  CAS  Google Scholar 

  • Freedman JH, Slice LW, Dixon D, Fire A, Rubin CS (1993) The novel metallothionein genes of Caenorhabditis elegans. J Biol Chem 268:2554–2564

    PubMed  CAS  Google Scholar 

  • Geyer PK, Meyuhas O, Perry RP, Johnson LF (1982) Regulation of ribosomal protein mRNA content and translation in growth-stimulated mouse fibroblasts. Mol Cell Biol 2:685–693

    PubMed  CAS  Google Scholar 

  • Gnanasekar M, Rao KVN, Chen L, Narayanan RB, Geetha M, Scott AL, Ramaswamy K, Kaliraj P (2002) Molecular characterization of a calcium binding translationally controlled tumor protein homologue from the filarial parasites Brugia malayi and Wuchereria bancrofti. Mol Biochem Parasitol 121:107–118

    Article  PubMed  CAS  Google Scholar 

  • Golden JW, Riddle DL (1982) A pheromone influences larval development in the nematode Caenorhabditis elegans. Science 218:578–580

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb S, Ruvkun G (1994) daf-2, daf-16 and daf-23: genetically interacting genes controlling dauer formation in Caenorhabditis elegans. Genetics 137:107–120

    PubMed  CAS  Google Scholar 

  • Grosset C, Chen C-YA, Xu N, Sonenberg N, Jacquemin-Sablon H, Shyu A-B (2000) A mechanism for translationally coupled mRNA turnover: interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell 103:29–40

    Article  PubMed  CAS  Google Scholar 

  • Hanazawa M, Kawasaki I, Kunitomo H, Gengyo-Ando K, Bennett KL, Mitani S, Iino Y (2004) The Caenorhabditis elegans eukaryotic initiation factor 5A homologue, IFF-1, is required for germ cell proliferation, gametogenesis and localization of the P-granule component PGL-1. Mech Dev 121:213–224

    Article  PubMed  CAS  Google Scholar 

  • Harris TW, Chen N, Cunningham F, Tello-Ruiz M, Antoshechkin I, Bastiani C, Bieri T, Blasiar D, Bradnam K, Chan J, Chen C-K, Chen WJ, Davis P, Kenny E, Kishore R, Lawson D, Lee R, Muller H-M, Nakamura C, Ozersky P, Petcherski A, Rogers A, Sabo A, Schwarz EM, Van Auken K, Wang Q, Durbin R, Spieth J, Sternberg PW, Stein LD (2004) WormBase: a multi-species resource for nematode biology and genomics. Nucleic Acids Res 32:D411–D417

    Article  PubMed  CAS  Google Scholar 

  • Heine U, Blumenthal T (1986) Characterization of regions of the Caenorhabditis elegans X chromosome containing vitellogenin genes. J Mol Biol 188:301–312

    Article  PubMed  CAS  Google Scholar 

  • Holt SJ, Riddle DL (2003) SAGE surveys C. elegans carbohydrate metabolism: evidence for an anaerobic shift in the long-lived dauer larva. Mech Ageing Dev 124:779–800

    Article  PubMed  CAS  Google Scholar 

  • Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, Vanfleteren JR (2002) Ageing is reversed, and metabolism is reset to young levels in recovering dauer larvae of C. elegans. Exp Gerontol 37:1015–1021

    Article  PubMed  CAS  Google Scholar 

  • Huisinga KL, Pugh BF (2004) A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell 13:573–585

    Article  PubMed  CAS  Google Scholar 

  • Jacobs T, Leippe M (1995) Purification and molecular cloning of a major antibacterial protein of the protozoan parasite Entamoeba histolytica with lysozyme-like properties. Eur J Biochem 231:831–838

    Article  PubMed  CAS  Google Scholar 

  • Jones D, Stringham EG, Graham RW, Candido EPM (1995) A portable regulatory element directs specific expression of the Caenorhabditis elegans ubiquitin gene ubq-2 in the somatic gonad. Dev Biol 171:60–72

    Article  PubMed  CAS  Google Scholar 

  • Jones SJM, Riddle DL, Pouzyrev AT, Velculescu VE, Hillier LaD, Eddy SR, Stricklin SL, Baillie DL, Waterston R, Marra MA (2001) Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans. Genome Res 11:1346–1352

    Article  PubMed  CAS  Google Scholar 

  • Kanekiyo M, Itoh N, Kawasaki A, Matsuda K, Nakanishi T, Tanaka K (2002) Metallothionein is required for zinc-induced expression of the macrophage colony stimulating factor gene. J Cell Biochem 86:145–153

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Shim KS, Lubec G (2002) Human brain nascent polypeptide-associated complex α subunit is decreased in patients with Alzheimer’s disease and Down Syndrome. J Investig Med 50:293–301

    Article  PubMed  CAS  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  PubMed  CAS  Google Scholar 

  • Klass M, Hirsh D (1976) Non-ageing developmental variant of Caenorhabditis elegans. Nature 260:523–525

    Article  PubMed  CAS  Google Scholar 

  • Kozubek S, Lukásová E, Jirsová P, Koutná I, Kozubek M, Ganová A, Bártová E, Falk M, Paseková R (2002) 3D structure of the human genome: order in randomness. Chromosoma 111:321–331

    Article  PubMed  CAS  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    Article  PubMed  CAS  Google Scholar 

  • Luster AD, Weinshank RL, Feinman R, Ravetch JV (1988) Molecular and biochemical characterization of a novel γ-interferon-inducible protein. J Biol Chem 263:12036–12043

    PubMed  CAS  Google Scholar 

  • MacDonald SM, Rafnar T, Langdon J, Lichtenstein LM (1995) Molecular identification of an IgE-dependent histamine-releasing factor. Science 269:688–690

    Article  PubMed  CAS  Google Scholar 

  • MacDonald SM, Bhisutthibhan J, Shapiro TA, Rogerson SJ, Taylor TE, Tembo M, Langdon JM, Meshnick SR (2001) Immune mimicry in malaria: Plasmodium falciparum secretes a functional histamine-releasing factor homolog in vitro and in vivo. Proc Natl Acad Sci USA 98:10829–10832

    Article  PubMed  CAS  Google Scholar 

  • Mallo GV, Kurz CL, Couillault C, Pujol N, Granjeaud S, Kohara Y, Ewbank JJ (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12:1209–1214

    Article  PubMed  CAS  Google Scholar 

  • Mangus DA, Evans MC, Jacobson A (2003) Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 4:223.1–223.14

    Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196

    Article  PubMed  CAS  Google Scholar 

  • Mitrovich QM, Anderson P (2000) Unproductively spliced ribosomal protein mRNAs are natural targets of mRNA surveillance in C. elegans. Genes Dev 14:2173–2184

    Article  PubMed  CAS  Google Scholar 

  • Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–284

    Article  PubMed  CAS  Google Scholar 

  • Navarro RE, Shim EY, Kohara Y, Singson A, Blackwell TK (2001) cgh-1, a conserved predicted RNA helicase required for gametogenesis and protection from physiological germline apoptosis in C. elegans. Development 128:3221–3232

    PubMed  CAS  Google Scholar 

  • Nelson DL, Cox MM (2000) Lehninger principles of biochemistry. Worth, New York

    Google Scholar 

  • Nicholas HR, Hodgkin J (2004) Responses to infection and possible recognition strategies in the innate immune system of Caenorhabditis elegans. Mol Immunol 41:479–493

    Article  PubMed  CAS  Google Scholar 

  • Nickel R, Jacobs T, Leippe M (1998) Molecular characterization of an exceptionally acidic lysozyme-like protein from the protozoon Entamoeba histolytica. FEBS Lett 437:153–157

    Article  PubMed  CAS  Google Scholar 

  • O’Riordan VB, Burnell AM (1989) Intermediary metabolism in the dauer larva of the nematode Caenorhabditis elegans-1. Glycolysis, gluconeogenesis, oxidative phosphorylation and the tricarboxylic acid cycle. Comp Biochem Physiol 92B:233–238

    CAS  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum, HA, Ruvkun G (1997) The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999

    Article  PubMed  CAS  Google Scholar 

  • Oka T, Yamamoto R, Futai M (1997) Three vha genes encode proteolipids of Caenorhabditis elegans vacuolar-type ATPase. J Biol Chem 272:24387–24392

    Article  PubMed  CAS  Google Scholar 

  • Oka T, Yamamoto R, Futai M (1998) Multiple genes for vacuolar-type ATPase proteolipids in Caenorhabditis elegans. J Biol Chem 273:22570–22576

    Article  PubMed  CAS  Google Scholar 

  • Rao KVN, Chen L, Gnanasekar M, Ramaswamy K (2002) Cloning and characterization of a calcium-binding, histamine-releasing protein from Schistosoma mansoni. J Biol Chem 277:31207–31213

    Article  PubMed  CAS  Google Scholar 

  • Redman KL, Rechsteiner M (1989) Identification of the long ubiquitin extension as ribosomal protein S27a. Nature 338:438–440

    Article  PubMed  CAS  Google Scholar 

  • Ren P, Lim C-S, Johnsen R, Albert PS, Pilgrim D, Riddle DL (1996) Control of C. elegans larval development by neuronal expression of a TGF-β homolog. Science 274:1389–1391

    Article  PubMed  CAS  Google Scholar 

  • Riddle DL, Albert PS (1997) Genetic and environmental regulation of dauer larva development. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II. Cold Spring Harbor Laboratory, Plainview, NY

    Google Scholar 

  • Senapin S, Clark-Walker GD, Chen XJ, Séraphin B, Daugeron M-C (2003) RRP20, a component of the 90S preribosome, is required for pre-18S rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Res 31:2524–2533

    Article  PubMed  CAS  Google Scholar 

  • Snutch TP, Baillie DL (1983) Alterations in the pattern of gene expression following heat shock in the nematode Caenorhabditis elegans. Can J Biochem Cell Biol 61:480–487

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam K, Seydoux G (1999) nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 126:4861–4871

    PubMed  CAS  Google Scholar 

  • Syntichaki P, Xu K, Driscoll M, Tavernarakis N (2002) Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature 419:939–944

    Article  PubMed  CAS  Google Scholar 

  • Sze JY, Victor M, Loer C, Shi Y, Ruvkun G (2000) Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403:560–564

    Article  PubMed  CAS  Google Scholar 

  • Tavernarakis N, Driscoll M (2002) Caloric restriction and lifespan: a role for protein turnover? Mech Ageing Dev 123:215–229

    Article  PubMed  CAS  Google Scholar 

  • Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP, Craven CJ (2001) Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nature Struct Biol 8:701–704

    Article  PubMed  CAS  Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  PubMed  CAS  Google Scholar 

  • Walker AK, Rothman JH, Shi Y, Blackwell TK (2001) Distinct requirements for C. elegans TAFIIs in early embryonic transcription. EMBO J 20:5269–5279

    Article  PubMed  CAS  Google Scholar 

  • Walker AK, Shi Y, Blackwell TK (2004) An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription. J Biol Chem 279:15339–15347

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Kim SK (2003) Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130:1621–1634

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Liu CL, Storey JD, Tibshirani RJ, Herschlag D, Brown PO (2002) Precision and functional specificity in mRNA decay. Proc Natl Acad Sci USA 99:5860–5865

    Article  PubMed  CAS  Google Scholar 

  • Webster GC, Webster SL (1982) Effects of age on the post-initiation stages of protein synthesis. Mech Ageing Dev 18:369–378

    Article  PubMed  CAS  Google Scholar 

  • Wickens M, Bernstein DS, Kimble J, Parker R (2002) A PUF family portrait: 3′UTR regulation as a way of life. Trends Genet 18:150–157

    Article  PubMed  CAS  Google Scholar 

  • Wicky C, Villeneuve AM, Lauper N, Codourey L, Tobler H, Müller F (1996) Telomeric repeats (TTAGGC) n are sufficient for chromosome capping function in Caenorhabditis elegans. Proc Natl Acad Sci USA 93:8983–8988

    Article  PubMed  CAS  Google Scholar 

  • Wilson GM, Lu J, Sutphen K, Sun Y, Huynh Y, Brewer G (2003) Regulation of A + U-rich element-directed mRNA turnover involving reversible phosphorylation of AUF1. J Biol Chem 278:33029–33038

    Article  PubMed  CAS  Google Scholar 

  • Wolkow CA, Muñoz MJ, Riddle DL, Ruvkun G (2002) Insulin receptor substrate and p55 orthologous adaptor proteins function in the Caenorhabditis elegans daf-2/insulin-like signaling pathway. J Biol Chem 277:49591–49597

    Article  PubMed  CAS  Google Scholar 

  • Xu A, Bellamy AR, Taylor JA (1999) Expression of translationally controlled tumour protein is regulated by calcium at both the transcriptional and post-transcriptional level. Biochem J 342:683–689

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Tavernarakis N, Driscoll M (2001) Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca2+ release from the endoplasmic reticulum. Neuron 31:957–971

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Duckett CS, Lindsten T (1995) iPABP, an inducible poly(A)-binding protein detected in activated human T cells. Mol Cell Biol 15:6770–6776

    PubMed  CAS  Google Scholar 

  • Yenofsky R, Bergmann I, Brawerman G (1982) Messenger RNA species partially in a repressed state in mouse sarcoma ascites cells. Proc Natl Acad Sci USA 79:5876–5880

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD, Williamson JR, Lehmann R (1997) The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA 3:1421–1433

    PubMed  CAS  Google Scholar 

  • Zhang B, Gallegos M, Puoti A, Durkin E, Fields S, Kimble J, Wickens MP (1997) A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390:477–484

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by DHHS grants GM60151 and AG12689 to D. Riddle and by a Division of Biological Sciences Research Incentive Fund, University of Missouri—Columbia. Thanks are extended to S. Jones for SAGE tag correlations to predicted genes and to S. Jones and D. Blasiar for guidance in data mining, D. Riddle for the stimulating and thoughtful advisement and to D. Riddle and the reviewers for manuscript critiques, D. Baillie for helpful suggestions, and to R. Madsen for the biostatistics consultation services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzan J. Holt.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Fig. S1

Transcript abundance distributions for dauer larvae and mixed stages. Transcript abundance classes/bins (theoretical minimum to maximum copies of each tag type per bin): 1 (1-5), 2 (6-10), 3 (11-20), 4 (21-40), 5 (41-80), 6 (81-160), 7 (161-320), 8 (321-640), 9 (641-1280), 10 (1281-2560). a. Relative frequency of transcripts (tag types) versus transcript abundance (copy number) class (log2 × log2). The theoretical maximum number of copies represents each transcript abundance class for either profile, i.e., the X-axis data points are fixed. b. Relative frequency of transcripts (tag types) versus average tag count per abundance class (log2 × log2). The X-axis data points can differ by profile (PDF 58 kb)

Fig. S2

Differential expression of PUF family genes. Encoded products contain the Pumilio/Puf RNA-binding domain IPR001313. Black bars: p 5 1.34E-05 (FDR 5 4.01E-05). Genes as shown and puf-8/C30G12.7, puf-9/W06B11.2, fbf-1/H12I13.4, fbf-2/F21H12.5, puf-3/Y45F10A.2, puf-5/F54C9.8 (PDF 65 kb)

Table S1

Abundant transcripts in the dauer larva or mixed-stage SAGE profiles (PDF 103 kb)

Table S2

Candidate genes for SAGA or TFIID regulation are differentially expressed in dauer larvae (D) and mixed stages (M) (PDF 66 kb)

Table S3

Transcription machinery genes (PDF 61 kb)

Table S4

Ribosomal protein genes (PDF 51 kb)

Table S5

Translation factor family genes (PDF 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holt, S.J. Staying alive in adversity: transcriptome dynamics in the stress-resistant dauer larva. Funct Integr Genomics 6, 285–299 (2006). https://doi.org/10.1007/s10142-006-0024-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-006-0024-5

Keywords

Navigation